gtc_quaternion.cpp 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. #include <glm/gtc/quaternion.hpp>
  2. #include <glm/gtc/epsilon.hpp>
  3. #include <glm/vector_relational.hpp>
  4. #include <vector>
  5. int test_quat_angle()
  6. {
  7. int Error = 0;
  8. {
  9. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  10. glm::quat N = glm::normalize(Q);
  11. float L = glm::length(N);
  12. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  13. float A = glm::angle(N);
  14. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  15. }
  16. {
  17. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
  18. glm::quat N = glm::normalize(Q);
  19. float L = glm::length(N);
  20. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  21. float A = glm::angle(N);
  22. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  23. }
  24. {
  25. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
  26. glm::quat N = glm::normalize(Q);
  27. float L = glm::length(N);
  28. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  29. float A = glm::angle(N);
  30. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  31. }
  32. return Error;
  33. }
  34. int test_quat_angleAxis()
  35. {
  36. int Error = 0;
  37. glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
  38. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  39. glm::quat C = glm::mix(A, B, 0.5f);
  40. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  41. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  42. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  43. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  44. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  45. return Error;
  46. }
  47. int test_quat_mix()
  48. {
  49. int Error = 0;
  50. glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
  51. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  52. glm::quat C = glm::mix(A, B, 0.5f);
  53. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  54. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  55. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  56. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  57. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  58. return Error;
  59. }
  60. int test_quat_precision()
  61. {
  62. int Error = 0;
  63. Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
  64. Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
  65. return Error;
  66. }
  67. int test_quat_normalize()
  68. {
  69. int Error(0);
  70. {
  71. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  72. glm::quat N = glm::normalize(Q);
  73. float L = glm::length(N);
  74. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  75. }
  76. {
  77. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
  78. glm::quat N = glm::normalize(Q);
  79. float L = glm::length(N);
  80. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  81. }
  82. {
  83. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
  84. glm::quat N = glm::normalize(Q);
  85. float L = glm::length(N);
  86. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  87. }
  88. return Error;
  89. }
  90. int test_quat_euler()
  91. {
  92. int Error(0);
  93. {
  94. glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
  95. float Roll = glm::roll(q);
  96. float Pitch = glm::pitch(q);
  97. float Yaw = glm::yaw(q);
  98. glm::vec3 Angles = glm::eulerAngles(q);
  99. }
  100. {
  101. glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f);
  102. double Roll = glm::roll(q);
  103. double Pitch = glm::pitch(q);
  104. double Yaw = glm::yaw(q);
  105. glm::dvec3 Angles = glm::eulerAngles(q);
  106. }
  107. return Error;
  108. }
  109. int test_quat_slerp()
  110. {
  111. int Error(0);
  112. float const Epsilon = 0.0001f;//glm::epsilon<float>();
  113. float sqrt2 = sqrt(2.0f)/2.0f;
  114. glm::quat id;
  115. glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
  116. glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
  117. // Testing a == 0
  118. // Must be id
  119. glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
  120. Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
  121. // Testing a == 1
  122. // Must be 90° rotation on Y : 0 0.7 0 0.7
  123. glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
  124. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
  125. // Testing standard, easy case
  126. // Must be 45° rotation on Y : 0 0.38 0 0.92
  127. glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
  128. // Testing reverse case
  129. // Must be 45° rotation on Y : 0 0.38 0 0.92
  130. glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
  131. // Testing against full circle around the sphere instead of shortest path
  132. // Must be 45° rotation on Y
  133. // certainly not a 135° rotation
  134. glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
  135. float Y45angle3 = glm::angle(Y45rot3);
  136. Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  137. Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
  138. // Same, but inverted
  139. // Must also be 45° rotation on Y : 0 0.38 0 0.92
  140. // -0 -0.38 -0 -0.92 is ok too
  141. glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
  142. Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
  143. // Testing q1 = q2
  144. // Must be 90° rotation on Y : 0 0.7 0 0.7
  145. glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
  146. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
  147. // Testing 180° rotation
  148. // Must be 90° rotation on almost any axis that is on the XZ plane
  149. glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
  150. float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
  151. Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  152. // Testing almost equal quaternions (this test should pass through the linear interpolation)
  153. // Must be 0 0.00X 0 0.99999
  154. glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
  155. // Testing quaternions with opposite sign
  156. {
  157. glm::quat a(-1, 0, 0, 0);
  158. glm::quat result = glm::slerp(a, id, 0.5f);
  159. Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
  160. }
  161. return Error;
  162. }
  163. int test_quat_mul()
  164. {
  165. int Error(0);
  166. glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
  167. glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
  168. glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
  169. glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
  170. glm::quat temp5 = glm::normalize(temp1 * temp2);
  171. glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
  172. # ifndef GLM_FORCE_NO_CTOR_INIT
  173. {
  174. glm::quat temp7;
  175. temp7 *= temp5;
  176. temp7 *= glm::inverse(temp5);
  177. Error += temp7 != glm::quat();
  178. }
  179. # endif
  180. return Error;
  181. }
  182. int test_quat_two_axis_ctr()
  183. {
  184. int Error(0);
  185. glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
  186. glm::vec3 v1 = q1 * glm::vec3(1, 0, 0);
  187. Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1;
  188. glm::quat q2 = q1 * q1;
  189. glm::vec3 v2 = q2 * glm::vec3(1, 0, 0);
  190. Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
  191. return Error;
  192. }
  193. int test_quat_type()
  194. {
  195. glm::quat A;
  196. glm::dquat B;
  197. return 0;
  198. }
  199. int test_quat_mul_vec()
  200. {
  201. int Error(0);
  202. glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  203. glm::vec3 v(1, 0, 0);
  204. glm::vec3 u(q * v);
  205. glm::vec3 w(u * q);
  206. Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1;
  207. return Error;
  208. }
  209. int test_quat_ctr()
  210. {
  211. int Error(0);
  212. # if GLM_HAS_TRIVIAL_QUERIES
  213. // Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1;
  214. // Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1;
  215. // Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1;
  216. // Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1;
  217. Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1;
  218. Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1;
  219. Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1;
  220. Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1;
  221. # endif
  222. # if GLM_HAS_INITIALIZER_LISTS
  223. {
  224. glm::quat A{0, 1, 2, 3};
  225. std::vector<glm::quat> B{
  226. {0, 1, 2, 3},
  227. {0, 1, 2, 3}};
  228. }
  229. # endif//GLM_HAS_INITIALIZER_LISTS
  230. return Error;
  231. }
  232. int test_size()
  233. {
  234. int Error = 0;
  235. Error += 16 == sizeof(glm::quat) ? 0 : 1;
  236. Error += 32 == sizeof(glm::dquat) ? 0 : 1;
  237. Error += glm::quat().length() == 4 ? 0 : 1;
  238. Error += glm::dquat().length() == 4 ? 0 : 1;
  239. Error += glm::quat::length() == 4 ? 0 : 1;
  240. Error += glm::dquat::length() == 4 ? 0 : 1;
  241. return Error;
  242. }
  243. int main()
  244. {
  245. int Error = 0;
  246. Error += test_quat_ctr();
  247. Error += test_quat_mul_vec();
  248. Error += test_quat_two_axis_ctr();
  249. Error += test_quat_mul();
  250. Error += test_quat_precision();
  251. Error += test_quat_type();
  252. Error += test_quat_angle();
  253. Error += test_quat_angleAxis();
  254. Error += test_quat_mix();
  255. Error += test_quat_normalize();
  256. Error += test_quat_euler();
  257. Error += test_quat_slerp();
  258. Error += test_size();
  259. return Error;
  260. }