ext_scalar_integer.cpp 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. #include <glm/ext/scalar_integer.hpp>
  2. #include <glm/ext/scalar_int_sized.hpp>
  3. #include <glm/ext/scalar_uint_sized.hpp>
  4. #include <vector>
  5. #include <ctime>
  6. #include <cstdio>
  7. namespace isPowerOfTwo
  8. {
  9. template<typename genType>
  10. struct type
  11. {
  12. genType Value;
  13. bool Return;
  14. };
  15. int test_int16()
  16. {
  17. type<glm::int16> const Data[] =
  18. {
  19. {0x0001, true},
  20. {0x0002, true},
  21. {0x0004, true},
  22. {0x0080, true},
  23. {0x0000, true},
  24. {0x0003, false}
  25. };
  26. int Error = 0;
  27. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
  28. {
  29. bool Result = glm::isPowerOfTwo(Data[i].Value);
  30. Error += Data[i].Return == Result ? 0 : 1;
  31. }
  32. return Error;
  33. }
  34. int test_uint16()
  35. {
  36. type<glm::uint16> const Data[] =
  37. {
  38. {0x0001, true},
  39. {0x0002, true},
  40. {0x0004, true},
  41. {0x0000, true},
  42. {0x0000, true},
  43. {0x0003, false}
  44. };
  45. int Error = 0;
  46. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
  47. {
  48. bool Result = glm::isPowerOfTwo(Data[i].Value);
  49. Error += Data[i].Return == Result ? 0 : 1;
  50. }
  51. return Error;
  52. }
  53. int test_int32()
  54. {
  55. type<int> const Data[] =
  56. {
  57. {0x00000001, true},
  58. {0x00000002, true},
  59. {0x00000004, true},
  60. {0x0000000f, false},
  61. {0x00000000, true},
  62. {0x00000003, false}
  63. };
  64. int Error = 0;
  65. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
  66. {
  67. bool Result = glm::isPowerOfTwo(Data[i].Value);
  68. Error += Data[i].Return == Result ? 0 : 1;
  69. }
  70. return Error;
  71. }
  72. int test_uint32()
  73. {
  74. type<glm::uint> const Data[] =
  75. {
  76. {0x00000001, true},
  77. {0x00000002, true},
  78. {0x00000004, true},
  79. {0x80000000, true},
  80. {0x00000000, true},
  81. {0x00000003, false}
  82. };
  83. int Error = 0;
  84. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
  85. {
  86. bool Result = glm::isPowerOfTwo(Data[i].Value);
  87. Error += Data[i].Return == Result ? 0 : 1;
  88. }
  89. return Error;
  90. }
  91. int test()
  92. {
  93. int Error = 0;
  94. Error += test_int16();
  95. Error += test_uint16();
  96. Error += test_int32();
  97. Error += test_uint32();
  98. return Error;
  99. }
  100. }//isPowerOfTwo
  101. namespace nextPowerOfTwo_advanced
  102. {
  103. template<typename genIUType>
  104. GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
  105. {
  106. genIUType tmp = Value;
  107. genIUType result = genIUType(0);
  108. while(tmp)
  109. {
  110. result = (tmp & (~tmp + 1)); // grab lowest bit
  111. tmp &= ~result; // clear lowest bit
  112. }
  113. return result;
  114. }
  115. template<typename genType>
  116. GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value)
  117. {
  118. return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
  119. }
  120. template<typename genType>
  121. struct type
  122. {
  123. genType Value;
  124. genType Return;
  125. };
  126. int test_int32()
  127. {
  128. type<glm::int32> const Data[] =
  129. {
  130. {0x0000ffff, 0x00010000},
  131. {-3, -4},
  132. {-8, -8},
  133. {0x00000001, 0x00000001},
  134. {0x00000002, 0x00000002},
  135. {0x00000004, 0x00000004},
  136. {0x00000007, 0x00000008},
  137. {0x0000fff0, 0x00010000},
  138. {0x0000f000, 0x00010000},
  139. {0x08000000, 0x08000000},
  140. {0x00000000, 0x00000000},
  141. {0x00000003, 0x00000004}
  142. };
  143. int Error(0);
  144. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
  145. {
  146. glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value);
  147. Error += Data[i].Return == Result ? 0 : 1;
  148. }
  149. return Error;
  150. }
  151. int test_uint32()
  152. {
  153. type<glm::uint32> const Data[] =
  154. {
  155. {0x00000001, 0x00000001},
  156. {0x00000002, 0x00000002},
  157. {0x00000004, 0x00000004},
  158. {0x00000007, 0x00000008},
  159. {0x0000ffff, 0x00010000},
  160. {0x0000fff0, 0x00010000},
  161. {0x0000f000, 0x00010000},
  162. {0x80000000, 0x80000000},
  163. {0x00000000, 0x00000000},
  164. {0x00000003, 0x00000004}
  165. };
  166. int Error(0);
  167. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
  168. {
  169. glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value);
  170. Error += Data[i].Return == Result ? 0 : 1;
  171. }
  172. return Error;
  173. }
  174. int perf()
  175. {
  176. int Error(0);
  177. std::vector<glm::uint> v;
  178. v.resize(100000000);
  179. std::clock_t Timestramp0 = std::clock();
  180. for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
  181. v[i] = nextPowerOfTwo_loop(i);
  182. std::clock_t Timestramp1 = std::clock();
  183. for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
  184. v[i] = glm::nextPowerOfTwo(i);
  185. std::clock_t Timestramp2 = std::clock();
  186. std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
  187. std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
  188. return Error;
  189. }
  190. int test()
  191. {
  192. int Error(0);
  193. Error += test_int32();
  194. Error += test_uint32();
  195. return Error;
  196. }
  197. }//namespace nextPowerOfTwo_advanced
  198. namespace prevPowerOfTwo
  199. {
  200. template <typename T>
  201. int run()
  202. {
  203. int Error = 0;
  204. T const A = glm::prevPowerOfTwo(static_cast<T>(7));
  205. Error += A == static_cast<T>(4) ? 0 : 1;
  206. T const B = glm::prevPowerOfTwo(static_cast<T>(15));
  207. Error += B == static_cast<T>(8) ? 0 : 1;
  208. T const C = glm::prevPowerOfTwo(static_cast<T>(31));
  209. Error += C == static_cast<T>(16) ? 0 : 1;
  210. T const D = glm::prevPowerOfTwo(static_cast<T>(32));
  211. Error += D == static_cast<T>(32) ? 0 : 1;
  212. return Error;
  213. }
  214. int test()
  215. {
  216. int Error = 0;
  217. Error += run<glm::int8>();
  218. Error += run<glm::int16>();
  219. Error += run<glm::int32>();
  220. Error += run<glm::int64>();
  221. Error += run<glm::uint8>();
  222. Error += run<glm::uint16>();
  223. Error += run<glm::uint32>();
  224. Error += run<glm::uint64>();
  225. return Error;
  226. }
  227. }//namespace prevPowerOfTwo
  228. namespace nextPowerOfTwo
  229. {
  230. template <typename T>
  231. int run()
  232. {
  233. int Error = 0;
  234. T const A = glm::nextPowerOfTwo(static_cast<T>(7));
  235. Error += A == static_cast<T>(8) ? 0 : 1;
  236. T const B = glm::nextPowerOfTwo(static_cast<T>(15));
  237. Error += B == static_cast<T>(16) ? 0 : 1;
  238. T const C = glm::nextPowerOfTwo(static_cast<T>(31));
  239. Error += C == static_cast<T>(32) ? 0 : 1;
  240. T const D = glm::nextPowerOfTwo(static_cast<T>(32));
  241. Error += D == static_cast<T>(32) ? 0 : 1;
  242. return Error;
  243. }
  244. int test()
  245. {
  246. int Error = 0;
  247. Error += run<glm::int8>();
  248. Error += run<glm::int16>();
  249. Error += run<glm::int32>();
  250. Error += run<glm::int64>();
  251. Error += run<glm::uint8>();
  252. Error += run<glm::uint16>();
  253. Error += run<glm::uint32>();
  254. Error += run<glm::uint64>();
  255. return Error;
  256. }
  257. }//namespace nextPowerOfTwo
  258. namespace prevMultiple
  259. {
  260. template<typename genIUType>
  261. struct type
  262. {
  263. genIUType Source;
  264. genIUType Multiple;
  265. genIUType Return;
  266. };
  267. template <typename T>
  268. int run()
  269. {
  270. type<T> const Data[] =
  271. {
  272. {8, 3, 6},
  273. {7, 7, 7}
  274. };
  275. int Error = 0;
  276. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  277. {
  278. T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple);
  279. Error += Data[i].Return == Result ? 0 : 1;
  280. }
  281. return Error;
  282. }
  283. int test()
  284. {
  285. int Error = 0;
  286. Error += run<glm::int8>();
  287. Error += run<glm::int16>();
  288. Error += run<glm::int32>();
  289. Error += run<glm::int64>();
  290. Error += run<glm::uint8>();
  291. Error += run<glm::uint16>();
  292. Error += run<glm::uint32>();
  293. Error += run<glm::uint64>();
  294. return Error;
  295. }
  296. }//namespace prevMultiple
  297. namespace nextMultiple
  298. {
  299. template<typename genIUType>
  300. struct type
  301. {
  302. genIUType Source;
  303. genIUType Multiple;
  304. genIUType Return;
  305. };
  306. template <typename T>
  307. int run()
  308. {
  309. type<T> const Data[] =
  310. {
  311. { 8, 3, 6 },
  312. { 7, 7, 7 }
  313. };
  314. int Error = 0;
  315. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  316. {
  317. T const Result = glm::nextMultiple(Data[i].Source, Data[i].Multiple);
  318. Error += Data[i].Return == Result ? 0 : 1;
  319. }
  320. return Error;
  321. }
  322. int test()
  323. {
  324. int Error = 0;
  325. Error += run<glm::int8>();
  326. Error += run<glm::int16>();
  327. Error += run<glm::int32>();
  328. Error += run<glm::int64>();
  329. Error += run<glm::uint8>();
  330. Error += run<glm::uint16>();
  331. Error += run<glm::uint32>();
  332. Error += run<glm::uint64>();
  333. return Error;
  334. }
  335. }//namespace nextMultiple
  336. int main()
  337. {
  338. int Error(0);
  339. Error += isPowerOfTwo::test();
  340. Error += prevPowerOfTwo::test();
  341. Error += nextPowerOfTwo::test();
  342. Error += nextPowerOfTwo_advanced::test();
  343. # ifdef NDEBUG
  344. Error += nextPowerOfTwo_advanced::perf();
  345. # endif//NDEBUG
  346. Error += prevMultiple::test();
  347. Error += nextMultiple::test();
  348. return Error;
  349. }