core_func_matrix.cpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. #include <glm/matrix.hpp>
  2. #include <glm/gtc/matrix_transform.hpp>
  3. #include <glm/gtc/ulp.hpp>
  4. #include <glm/gtc/epsilon.hpp>
  5. #include <vector>
  6. #include <ctime>
  7. #include <cstdio>
  8. using namespace glm;
  9. int test_matrixCompMult()
  10. {
  11. int Error(0);
  12. {
  13. mat2 m(0, 1, 2, 3);
  14. mat2 n = matrixCompMult(m, m);
  15. Error += n == mat2(0, 1, 4, 9) ? 0 : 1;
  16. }
  17. {
  18. mat2x3 m(0, 1, 2, 3, 4, 5);
  19. mat2x3 n = matrixCompMult(m, m);
  20. Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1;
  21. }
  22. {
  23. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  24. mat2x4 n = matrixCompMult(m, m);
  25. Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  26. }
  27. {
  28. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  29. mat3 n = matrixCompMult(m, m);
  30. Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1;
  31. }
  32. {
  33. mat3x2 m(0, 1, 2, 3, 4, 5);
  34. mat3x2 n = matrixCompMult(m, m);
  35. Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1;
  36. }
  37. {
  38. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  39. mat3x4 n = matrixCompMult(m, m);
  40. Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  41. }
  42. {
  43. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  44. mat4 n = matrixCompMult(m, m);
  45. Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1;
  46. }
  47. {
  48. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  49. mat4x2 n = matrixCompMult(m, m);
  50. Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  51. }
  52. {
  53. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  54. mat4x3 n = matrixCompMult(m, m);
  55. Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  56. }
  57. return Error;
  58. }
  59. int test_outerProduct()
  60. {
  61. { glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); }
  62. { glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); }
  63. { glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); }
  64. { glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); }
  65. { glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); }
  66. { glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); }
  67. { glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); }
  68. { glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); }
  69. { glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); }
  70. return 0;
  71. }
  72. int test_transpose()
  73. {
  74. int Error(0);
  75. {
  76. mat2 m(0, 1, 2, 3);
  77. mat2 t = transpose(m);
  78. Error += t == mat2(0, 2, 1, 3) ? 0 : 1;
  79. }
  80. {
  81. mat2x3 m(0, 1, 2, 3, 4, 5);
  82. mat3x2 t = transpose(m);
  83. Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1;
  84. }
  85. {
  86. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  87. mat4x2 t = transpose(m);
  88. Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1;
  89. }
  90. {
  91. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  92. mat3 t = transpose(m);
  93. Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1;
  94. }
  95. {
  96. mat3x2 m(0, 1, 2, 3, 4, 5);
  97. mat2x3 t = transpose(m);
  98. Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1;
  99. }
  100. {
  101. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  102. mat4x3 t = transpose(m);
  103. Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1;
  104. }
  105. {
  106. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  107. mat4 t = transpose(m);
  108. Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1;
  109. }
  110. {
  111. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  112. mat2x4 t = transpose(m);
  113. Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1;
  114. }
  115. {
  116. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  117. mat3x4 t = transpose(m);
  118. Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1;
  119. }
  120. return Error;
  121. }
  122. int test_determinant()
  123. {
  124. return 0;
  125. }
  126. int test_inverse()
  127. {
  128. int Failed(0);
  129. glm::mat4x4 A4x4(
  130. glm::vec4(1, 0, 1, 0),
  131. glm::vec4(0, 1, 0, 0),
  132. glm::vec4(0, 0, 1, 0),
  133. glm::vec4(0, 0, 0, 1));
  134. glm::mat4x4 B4x4 = inverse(A4x4);
  135. glm::mat4x4 I4x4 = A4x4 * B4x4;
  136. Failed += I4x4 == glm::mat4x4(1) ? 0 : 1;
  137. glm::mat3x3 A3x3(
  138. glm::vec3(1, 0, 1),
  139. glm::vec3(0, 1, 0),
  140. glm::vec3(0, 0, 1));
  141. glm::mat3x3 B3x3 = glm::inverse(A3x3);
  142. glm::mat3x3 I3x3 = A3x3 * B3x3;
  143. Failed += I3x3 == glm::mat3x3(1) ? 0 : 1;
  144. glm::mat2x2 A2x2(
  145. glm::vec2(1, 1),
  146. glm::vec2(0, 1));
  147. glm::mat2x2 B2x2 = glm::inverse(A2x2);
  148. glm::mat2x2 I2x2 = A2x2 * B2x2;
  149. Failed += I2x2 == glm::mat2x2(1) ? 0 : 1;
  150. return Failed;
  151. }
  152. int test_inverse_simd()
  153. {
  154. int Error = 0;
  155. glm::mat4x4 const Identity(1);
  156. glm::mat4x4 const A4x4(
  157. glm::vec4(1, 0, 1, 0),
  158. glm::vec4(0, 1, 0, 0),
  159. glm::vec4(0, 0, 1, 0),
  160. glm::vec4(0, 0, 0, 1));
  161. glm::mat4x4 const B4x4 = glm::inverse(A4x4);
  162. glm::mat4x4 const I4x4 = A4x4 * B4x4;
  163. Error += glm::all(glm::epsilonEqual(I4x4[0], Identity[0], 0.001f)) ? 0 : 1;
  164. Error += glm::all(glm::epsilonEqual(I4x4[1], Identity[1], 0.001f)) ? 0 : 1;
  165. Error += glm::all(glm::epsilonEqual(I4x4[2], Identity[2], 0.001f)) ? 0 : 1;
  166. Error += glm::all(glm::epsilonEqual(I4x4[3], Identity[3], 0.001f)) ? 0 : 1;
  167. return Error;
  168. }
  169. template <typename VEC3, typename MAT4>
  170. int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message)
  171. {
  172. std::vector<MAT4> TestInputs;
  173. TestInputs.resize(Count);
  174. std::vector<MAT4> TestOutputs;
  175. TestOutputs.resize(TestInputs.size());
  176. VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f)));
  177. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  178. {
  179. typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1);
  180. TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis);
  181. //TestInputs[i] = glm::translate(MAT4(1), Axis * f);
  182. }
  183. std::clock_t StartTime = std::clock();
  184. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  185. TestOutputs[i] = glm::inverse(TestInputs[i]);
  186. std::clock_t EndTime = std::clock();
  187. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  188. TestOutputs[i] = TestOutputs[i] * TestInputs[i];
  189. typename MAT4::value_type Diff(0);
  190. for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry)
  191. {
  192. MAT4 i(1.0);
  193. MAT4 m(TestOutputs[Entry]);
  194. for(glm::length_t y = 0; y < m.length(); ++y)
  195. for(glm::length_t x = 0; x < m[y].length(); ++x)
  196. Diff = glm::max(m[y][x], i[y][x]);
  197. }
  198. //glm::uint Ulp = 0;
  199. //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp);
  200. printf("inverse<%s>(%f): %lu\n", Message, Diff, EndTime - StartTime);
  201. return 0;
  202. }
  203. int main()
  204. {
  205. int Error(0);
  206. Error += test_matrixCompMult();
  207. Error += test_outerProduct();
  208. Error += test_transpose();
  209. Error += test_determinant();
  210. Error += test_inverse();
  211. Error += test_inverse_simd();
  212. # ifdef NDEBUG
  213. std::size_t const Samples(1000);
  214. for(std::size_t i = 0; i < 1; ++i)
  215. {
  216. Error += test_inverse_perf<glm::vec3, glm::mat4>(Samples, i, "mat4");
  217. Error += test_inverse_perf<glm::dvec3, glm::dmat4>(Samples, i, "dmat4");
  218. }
  219. # endif//NDEBUG
  220. return Error;
  221. }