gtc_quaternion.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. #include <glm/gtc/quaternion.hpp>
  2. #include <glm/gtc/matrix_transform.hpp>
  3. #include <glm/ext/vector_relational.hpp>
  4. #include <glm/glm.hpp>
  5. #include <vector>
  6. int test_quat_angle()
  7. {
  8. int Error = 0;
  9. {
  10. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  11. glm::quat N = glm::normalize(Q);
  12. float L = glm::length(N);
  13. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  14. float A = glm::angle(N);
  15. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  16. }
  17. {
  18. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
  19. glm::quat N = glm::normalize(Q);
  20. float L = glm::length(N);
  21. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  22. float A = glm::angle(N);
  23. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  24. }
  25. {
  26. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
  27. glm::quat N = glm::normalize(Q);
  28. float L = glm::length(N);
  29. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  30. float A = glm::angle(N);
  31. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  32. }
  33. return Error;
  34. }
  35. int test_quat_angleAxis()
  36. {
  37. int Error = 0;
  38. glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
  39. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  40. glm::quat C = glm::mix(A, B, 0.5f);
  41. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  42. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  43. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  44. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  45. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  46. return Error;
  47. }
  48. int test_quat_mix()
  49. {
  50. int Error = 0;
  51. glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
  52. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  53. glm::quat C = glm::mix(A, B, 0.5f);
  54. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  55. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  56. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  57. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  58. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  59. return Error;
  60. }
  61. int test_quat_precision()
  62. {
  63. int Error = 0;
  64. Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
  65. Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
  66. return Error;
  67. }
  68. int test_quat_normalize()
  69. {
  70. int Error(0);
  71. {
  72. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  73. glm::quat N = glm::normalize(Q);
  74. float L = glm::length(N);
  75. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  76. }
  77. {
  78. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
  79. glm::quat N = glm::normalize(Q);
  80. float L = glm::length(N);
  81. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  82. }
  83. {
  84. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
  85. glm::quat N = glm::normalize(Q);
  86. float L = glm::length(N);
  87. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  88. }
  89. return Error;
  90. }
  91. int test_quat_euler()
  92. {
  93. int Error = 0;
  94. {
  95. glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
  96. float Roll = glm::roll(q);
  97. float Pitch = glm::pitch(q);
  98. float Yaw = glm::yaw(q);
  99. glm::vec3 Angles = glm::eulerAngles(q);
  100. Error += glm::all(glm::epsilonEqual(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1;
  101. }
  102. {
  103. glm::dquat q(1.0, 0.0, 0.0, 1.0);
  104. double Roll = glm::roll(q);
  105. double Pitch = glm::pitch(q);
  106. double Yaw = glm::yaw(q);
  107. glm::dvec3 Angles = glm::eulerAngles(q);
  108. Error += glm::all(glm::epsilonEqual(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1;
  109. }
  110. return Error;
  111. }
  112. int test_quat_slerp()
  113. {
  114. int Error = 0;
  115. float const Epsilon = 0.0001f;//glm::epsilon<float>();
  116. float sqrt2 = std::sqrt(2.0f)/2.0f;
  117. glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
  118. glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
  119. glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
  120. // Testing a == 0
  121. // Must be id
  122. glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
  123. Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
  124. // Testing a == 1
  125. // Must be 90° rotation on Y : 0 0.7 0 0.7
  126. glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
  127. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
  128. // Testing standard, easy case
  129. // Must be 45° rotation on Y : 0 0.38 0 0.92
  130. glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
  131. // Testing reverse case
  132. // Must be 45° rotation on Y : 0 0.38 0 0.92
  133. glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
  134. // Testing against full circle around the sphere instead of shortest path
  135. // Must be 45° rotation on Y
  136. // certainly not a 135° rotation
  137. glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
  138. float Y45angle3 = glm::angle(Y45rot3);
  139. Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  140. Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
  141. // Same, but inverted
  142. // Must also be 45° rotation on Y : 0 0.38 0 0.92
  143. // -0 -0.38 -0 -0.92 is ok too
  144. glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
  145. Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
  146. // Testing q1 = q2
  147. // Must be 90° rotation on Y : 0 0.7 0 0.7
  148. glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
  149. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
  150. // Testing 180° rotation
  151. // Must be 90° rotation on almost any axis that is on the XZ plane
  152. glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
  153. float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
  154. Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  155. // Testing almost equal quaternions (this test should pass through the linear interpolation)
  156. // Must be 0 0.00X 0 0.99999
  157. glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
  158. // Testing quaternions with opposite sign
  159. {
  160. glm::quat a(-1, 0, 0, 0);
  161. glm::quat result = glm::slerp(a, id, 0.5f);
  162. Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
  163. }
  164. return Error;
  165. }
  166. int test_quat_mul()
  167. {
  168. int Error = 0;
  169. glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
  170. glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
  171. glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
  172. glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
  173. glm::quat temp5 = glm::normalize(temp1 * temp2);
  174. glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
  175. glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0));
  176. temp7 *= temp5;
  177. temp7 *= glm::inverse(temp5);
  178. Error += temp7 != glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0));
  179. return Error;
  180. }
  181. int test_quat_two_axis_ctr()
  182. {
  183. int Error = 0;
  184. glm::quat const q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
  185. glm::vec3 const v1 = q1 * glm::vec3(1, 0, 0);
  186. Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1;
  187. glm::quat const q2 = q1 * q1;
  188. glm::vec3 const v2 = q2 * glm::vec3(1, 0, 0);
  189. Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
  190. glm::quat const q3(glm::vec3(1, 0, 0), glm::vec3(-1, 0, 0));
  191. glm::vec3 const v3 = q3 * glm::vec3(1, 0, 0);
  192. Error += glm::all(glm::epsilonEqual(v3, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
  193. glm::quat const q4(glm::vec3(0, 1, 0), glm::vec3(0, -1, 0));
  194. glm::vec3 const v4 = q4 * glm::vec3(0, 1, 0);
  195. Error += glm::all(glm::epsilonEqual(v4, glm::vec3(0, -1, 0), 0.0001f)) ? 0 : 1;
  196. glm::quat const q5(glm::vec3(0, 0, 1), glm::vec3(0, 0, -1));
  197. glm::vec3 const v5 = q5 * glm::vec3(0, 0, 1);
  198. Error += glm::all(glm::epsilonEqual(v5, glm::vec3(0, 0, -1), 0.0001f)) ? 0 : 1;
  199. return Error;
  200. }
  201. int test_quat_mul_vec()
  202. {
  203. int Error(0);
  204. glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  205. glm::vec3 v(1, 0, 0);
  206. glm::vec3 u(q * v);
  207. glm::vec3 w(u * q);
  208. Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1;
  209. return Error;
  210. }
  211. int test_quat_ctr()
  212. {
  213. int Error(0);
  214. # if GLM_HAS_TRIVIAL_QUERIES
  215. // Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1;
  216. // Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1;
  217. // Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1;
  218. // Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1;
  219. Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1;
  220. Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1;
  221. Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1;
  222. Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1;
  223. # endif
  224. # if GLM_HAS_INITIALIZER_LISTS
  225. {
  226. glm::quat A{0, 1, 2, 3};
  227. std::vector<glm::quat> B{
  228. {0, 1, 2, 3},
  229. {0, 1, 2, 3}};
  230. }
  231. # endif//GLM_HAS_INITIALIZER_LISTS
  232. return Error;
  233. }
  234. int test_size()
  235. {
  236. int Error = 0;
  237. Error += 16 == sizeof(glm::quat) ? 0 : 1;
  238. Error += 32 == sizeof(glm::dquat) ? 0 : 1;
  239. Error += glm::quat().length() == 4 ? 0 : 1;
  240. Error += glm::dquat().length() == 4 ? 0 : 1;
  241. Error += glm::quat::length() == 4 ? 0 : 1;
  242. Error += glm::dquat::length() == 4 ? 0 : 1;
  243. return Error;
  244. }
  245. static int test_constexpr()
  246. {
  247. #if GLM_HAS_CONSTEXPR
  248. static_assert(glm::quat::length() == 4, "GLM: Failed constexpr");
  249. static_assert(glm::quat(1.0f, glm::vec3(0.0f)).w > 0.0f, "GLM: Failed constexpr");
  250. #endif
  251. return 0;
  252. }
  253. int test_identity()
  254. {
  255. int Error = 0;
  256. glm::quat const Q = glm::identity<glm::quat>();
  257. Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1;
  258. Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0;
  259. glm::mat4 const M = glm::identity<glm::mat4x4>();
  260. glm::mat4 const N(1.0f);
  261. Error += glm::all(glm::equal(M[0], N[0], 0.0001f)) ? 0 : 1;
  262. Error += glm::all(glm::equal(M[1], N[1], 0.0001f)) ? 0 : 1;
  263. Error += glm::all(glm::equal(M[2], N[2], 0.0001f)) ? 0 : 1;
  264. Error += glm::all(glm::equal(M[3], N[3], 0.0001f)) ? 0 : 1;
  265. return Error;
  266. }
  267. int main()
  268. {
  269. int Error = 0;
  270. Error += test_quat_ctr();
  271. Error += test_quat_mul_vec();
  272. Error += test_quat_two_axis_ctr();
  273. Error += test_quat_mul();
  274. Error += test_quat_precision();
  275. Error += test_quat_angle();
  276. Error += test_quat_angleAxis();
  277. Error += test_quat_mix();
  278. Error += test_quat_normalize();
  279. Error += test_quat_euler();
  280. Error += test_quat_slerp();
  281. Error += test_size();
  282. Error += test_constexpr();
  283. Error += test_identity();
  284. return Error;
  285. }