ext_vector_integer.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. #include <glm/ext/vector_integer.hpp>
  2. #include <glm/ext/scalar_int_sized.hpp>
  3. #include <glm/ext/scalar_uint_sized.hpp>
  4. #include <vector>
  5. #include <ctime>
  6. #include <cstdio>
  7. namespace isPowerOfTwo
  8. {
  9. template<typename genType>
  10. struct type
  11. {
  12. genType Value;
  13. bool Return;
  14. };
  15. template <glm::length_t L>
  16. int test_int16()
  17. {
  18. type<glm::int16> const Data[] =
  19. {
  20. { 0x0001, true },
  21. { 0x0002, true },
  22. { 0x0004, true },
  23. { 0x0080, true },
  24. { 0x0000, true },
  25. { 0x0003, false }
  26. };
  27. int Error = 0;
  28. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
  29. {
  30. glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int16>(Data[i].Value));
  31. Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
  32. }
  33. return Error;
  34. }
  35. template <glm::length_t L>
  36. int test_uint16()
  37. {
  38. type<glm::uint16> const Data[] =
  39. {
  40. { 0x0001, true },
  41. { 0x0002, true },
  42. { 0x0004, true },
  43. { 0x0000, true },
  44. { 0x0000, true },
  45. { 0x0003, false }
  46. };
  47. int Error = 0;
  48. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
  49. {
  50. glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint16>(Data[i].Value));
  51. Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
  52. }
  53. return Error;
  54. }
  55. template <glm::length_t L>
  56. int test_int32()
  57. {
  58. type<int> const Data[] =
  59. {
  60. { 0x00000001, true },
  61. { 0x00000002, true },
  62. { 0x00000004, true },
  63. { 0x0000000f, false },
  64. { 0x00000000, true },
  65. { 0x00000003, false }
  66. };
  67. int Error = 0;
  68. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
  69. {
  70. glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int32>(Data[i].Value));
  71. Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
  72. }
  73. return Error;
  74. }
  75. template <glm::length_t L>
  76. int test_uint32()
  77. {
  78. type<glm::uint> const Data[] =
  79. {
  80. { 0x00000001, true },
  81. { 0x00000002, true },
  82. { 0x00000004, true },
  83. { 0x80000000, true },
  84. { 0x00000000, true },
  85. { 0x00000003, false }
  86. };
  87. int Error = 0;
  88. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
  89. {
  90. glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint32>(Data[i].Value));
  91. Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
  92. }
  93. return Error;
  94. }
  95. int test()
  96. {
  97. int Error = 0;
  98. Error += test_int16<1>();
  99. Error += test_int16<2>();
  100. Error += test_int16<3>();
  101. Error += test_int16<4>();
  102. Error += test_uint16<1>();
  103. Error += test_uint16<2>();
  104. Error += test_uint16<3>();
  105. Error += test_uint16<4>();
  106. Error += test_int32<1>();
  107. Error += test_int32<2>();
  108. Error += test_int32<3>();
  109. Error += test_int32<4>();
  110. Error += test_uint32<1>();
  111. Error += test_uint32<2>();
  112. Error += test_uint32<3>();
  113. Error += test_uint32<4>();
  114. return Error;
  115. }
  116. }//isPowerOfTwo
  117. namespace prevPowerOfTwo
  118. {
  119. template <glm::length_t L, typename T>
  120. int run()
  121. {
  122. int Error = 0;
  123. glm::vec<L, T> const A = glm::prevPowerOfTwo(glm::vec<L, T>(7));
  124. Error += A == glm::vec<L, T>(4) ? 0 : 1;
  125. glm::vec<L, T> const B = glm::prevPowerOfTwo(glm::vec<L, T>(15));
  126. Error += B == glm::vec<L, T>(8) ? 0 : 1;
  127. glm::vec<L, T> const C = glm::prevPowerOfTwo(glm::vec<L, T>(31));
  128. Error += C == glm::vec<L, T>(16) ? 0 : 1;
  129. glm::vec<L, T> const D = glm::prevPowerOfTwo(glm::vec<L, T>(32));
  130. Error += D == glm::vec<L, T>(32) ? 0 : 1;
  131. return Error;
  132. }
  133. int test()
  134. {
  135. int Error = 0;
  136. Error += run<1, glm::int8>();
  137. Error += run<2, glm::int8>();
  138. Error += run<3, glm::int8>();
  139. Error += run<4, glm::int8>();
  140. Error += run<1, glm::int16>();
  141. Error += run<2, glm::int16>();
  142. Error += run<3, glm::int16>();
  143. Error += run<4, glm::int16>();
  144. Error += run<1, glm::int32>();
  145. Error += run<2, glm::int32>();
  146. Error += run<3, glm::int32>();
  147. Error += run<4, glm::int32>();
  148. Error += run<1, glm::int64>();
  149. Error += run<2, glm::int64>();
  150. Error += run<3, glm::int64>();
  151. Error += run<4, glm::int64>();
  152. Error += run<1, glm::uint8>();
  153. Error += run<2, glm::uint8>();
  154. Error += run<3, glm::uint8>();
  155. Error += run<4, glm::uint8>();
  156. Error += run<1, glm::uint16>();
  157. Error += run<2, glm::uint16>();
  158. Error += run<3, glm::uint16>();
  159. Error += run<4, glm::uint16>();
  160. Error += run<1, glm::uint32>();
  161. Error += run<2, glm::uint32>();
  162. Error += run<3, glm::uint32>();
  163. Error += run<4, glm::uint32>();
  164. Error += run<1, glm::uint64>();
  165. Error += run<2, glm::uint64>();
  166. Error += run<3, glm::uint64>();
  167. Error += run<4, glm::uint64>();
  168. return Error;
  169. }
  170. }//namespace prevPowerOfTwo
  171. namespace nextPowerOfTwo
  172. {
  173. template <glm::length_t L, typename T>
  174. int run()
  175. {
  176. int Error = 0;
  177. glm::vec<L, T> const A = glm::nextPowerOfTwo(glm::vec<L, T>(7));
  178. Error += A == glm::vec<L, T>(8) ? 0 : 1;
  179. glm::vec<L, T> const B = glm::nextPowerOfTwo(glm::vec<L, T>(15));
  180. Error += B == glm::vec<L, T>(16) ? 0 : 1;
  181. glm::vec<L, T> const C = glm::nextPowerOfTwo(glm::vec<L, T>(31));
  182. Error += C == glm::vec<L, T>(32) ? 0 : 1;
  183. glm::vec<L, T> const D = glm::nextPowerOfTwo(glm::vec<L, T>(32));
  184. Error += D == glm::vec<L, T>(32) ? 0 : 1;
  185. return Error;
  186. }
  187. int test()
  188. {
  189. int Error = 0;
  190. Error += run<1, glm::int8>();
  191. Error += run<2, glm::int8>();
  192. Error += run<3, glm::int8>();
  193. Error += run<4, glm::int8>();
  194. Error += run<1, glm::int16>();
  195. Error += run<2, glm::int16>();
  196. Error += run<3, glm::int16>();
  197. Error += run<4, glm::int16>();
  198. Error += run<1, glm::int32>();
  199. Error += run<2, glm::int32>();
  200. Error += run<3, glm::int32>();
  201. Error += run<4, glm::int32>();
  202. Error += run<1, glm::int64>();
  203. Error += run<2, glm::int64>();
  204. Error += run<3, glm::int64>();
  205. Error += run<4, glm::int64>();
  206. Error += run<1, glm::uint8>();
  207. Error += run<2, glm::uint8>();
  208. Error += run<3, glm::uint8>();
  209. Error += run<4, glm::uint8>();
  210. Error += run<1, glm::uint16>();
  211. Error += run<2, glm::uint16>();
  212. Error += run<3, glm::uint16>();
  213. Error += run<4, glm::uint16>();
  214. Error += run<1, glm::uint32>();
  215. Error += run<2, glm::uint32>();
  216. Error += run<3, glm::uint32>();
  217. Error += run<4, glm::uint32>();
  218. Error += run<1, glm::uint64>();
  219. Error += run<2, glm::uint64>();
  220. Error += run<3, glm::uint64>();
  221. Error += run<4, glm::uint64>();
  222. return Error;
  223. }
  224. }//namespace nextPowerOfTwo
  225. namespace prevMultiple
  226. {
  227. template<typename genIUType>
  228. struct type
  229. {
  230. genIUType Source;
  231. genIUType Multiple;
  232. genIUType Return;
  233. };
  234. template <glm::length_t L, typename T>
  235. int run()
  236. {
  237. type<T> const Data[] =
  238. {
  239. { 8, 3, 6 },
  240. { 7, 7, 7 }
  241. };
  242. int Error = 0;
  243. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  244. {
  245. glm::vec<L, T> const Result0 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple);
  246. Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1;
  247. glm::vec<L, T> const Result1 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple));
  248. Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1;
  249. }
  250. return Error;
  251. }
  252. int test()
  253. {
  254. int Error = 0;
  255. Error += run<1, glm::int8>();
  256. Error += run<2, glm::int8>();
  257. Error += run<3, glm::int8>();
  258. Error += run<4, glm::int8>();
  259. Error += run<1, glm::int16>();
  260. Error += run<2, glm::int16>();
  261. Error += run<3, glm::int16>();
  262. Error += run<4, glm::int16>();
  263. Error += run<1, glm::int32>();
  264. Error += run<2, glm::int32>();
  265. Error += run<3, glm::int32>();
  266. Error += run<4, glm::int32>();
  267. Error += run<1, glm::int64>();
  268. Error += run<2, glm::int64>();
  269. Error += run<3, glm::int64>();
  270. Error += run<4, glm::int64>();
  271. Error += run<1, glm::uint8>();
  272. Error += run<2, glm::uint8>();
  273. Error += run<3, glm::uint8>();
  274. Error += run<4, glm::uint8>();
  275. Error += run<1, glm::uint16>();
  276. Error += run<2, glm::uint16>();
  277. Error += run<3, glm::uint16>();
  278. Error += run<4, glm::uint16>();
  279. Error += run<1, glm::uint32>();
  280. Error += run<2, glm::uint32>();
  281. Error += run<3, glm::uint32>();
  282. Error += run<4, glm::uint32>();
  283. Error += run<1, glm::uint64>();
  284. Error += run<2, glm::uint64>();
  285. Error += run<3, glm::uint64>();
  286. Error += run<4, glm::uint64>();
  287. return Error;
  288. }
  289. }//namespace prevMultiple
  290. namespace nextMultiple
  291. {
  292. template<typename genIUType>
  293. struct type
  294. {
  295. genIUType Source;
  296. genIUType Multiple;
  297. genIUType Return;
  298. };
  299. template <glm::length_t L, typename T>
  300. int run()
  301. {
  302. type<T> const Data[] =
  303. {
  304. { 3, 4, 4 },
  305. { 6, 3, 6 },
  306. { 5, 3, 6 },
  307. { 7, 7, 7 },
  308. { 0, 1, 0 },
  309. { 8, 3, 9 }
  310. };
  311. int Error = 0;
  312. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  313. {
  314. glm::vec<L, T> const Result0 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple));
  315. Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1;
  316. glm::vec<L, T> const Result1 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple);
  317. Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1;
  318. }
  319. return Error;
  320. }
  321. int test()
  322. {
  323. int Error = 0;
  324. Error += run<1, glm::int8>();
  325. Error += run<2, glm::int8>();
  326. Error += run<3, glm::int8>();
  327. Error += run<4, glm::int8>();
  328. Error += run<1, glm::int16>();
  329. Error += run<2, glm::int16>();
  330. Error += run<3, glm::int16>();
  331. Error += run<4, glm::int16>();
  332. Error += run<1, glm::int32>();
  333. Error += run<2, glm::int32>();
  334. Error += run<3, glm::int32>();
  335. Error += run<4, glm::int32>();
  336. Error += run<1, glm::int64>();
  337. Error += run<2, glm::int64>();
  338. Error += run<3, glm::int64>();
  339. Error += run<4, glm::int64>();
  340. Error += run<1, glm::uint8>();
  341. Error += run<2, glm::uint8>();
  342. Error += run<3, glm::uint8>();
  343. Error += run<4, glm::uint8>();
  344. Error += run<1, glm::uint16>();
  345. Error += run<2, glm::uint16>();
  346. Error += run<3, glm::uint16>();
  347. Error += run<4, glm::uint16>();
  348. Error += run<1, glm::uint32>();
  349. Error += run<2, glm::uint32>();
  350. Error += run<3, glm::uint32>();
  351. Error += run<4, glm::uint32>();
  352. Error += run<1, glm::uint64>();
  353. Error += run<2, glm::uint64>();
  354. Error += run<3, glm::uint64>();
  355. Error += run<4, glm::uint64>();
  356. return Error;
  357. }
  358. }//namespace nextMultiple
  359. namespace findNSB
  360. {
  361. template<typename T>
  362. struct type
  363. {
  364. T Source;
  365. int SignificantBitCount;
  366. int Return;
  367. };
  368. template <glm::length_t L, typename T>
  369. int run()
  370. {
  371. type<T> const Data[] =
  372. {
  373. { 0x00, 1,-1 },
  374. { 0x01, 2,-1 },
  375. { 0x02, 2,-1 },
  376. { 0x06, 3,-1 },
  377. { 0x01, 1, 0 },
  378. { 0x03, 1, 0 },
  379. { 0x03, 2, 1 },
  380. { 0x07, 2, 1 },
  381. { 0x05, 2, 2 },
  382. { 0x0D, 2, 2 }
  383. };
  384. int Error = 0;
  385. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  386. {
  387. glm::vec<L, int> const Result0 = glm::findNSB<L, T, glm::defaultp>(glm::vec<L, T>(Data[i].Source), glm::vec<L, int>(Data[i].SignificantBitCount));
  388. Error += glm::vec<L, int>(Data[i].Return) == Result0 ? 0 : 1;
  389. assert(!Error);
  390. }
  391. return Error;
  392. }
  393. int test()
  394. {
  395. int Error = 0;
  396. /*
  397. Error += run<1, glm::uint8>();
  398. Error += run<2, glm::uint8>();
  399. Error += run<3, glm::uint8>();
  400. Error += run<4, glm::uint8>();
  401. Error += run<1, glm::uint16>();
  402. Error += run<2, glm::uint16>();
  403. Error += run<3, glm::uint16>();
  404. Error += run<4, glm::uint16>();
  405. Error += run<1, glm::uint32>();
  406. Error += run<2, glm::uint32>();
  407. Error += run<3, glm::uint32>();
  408. */
  409. Error += run<4, glm::uint32>();
  410. /*
  411. Error += run<1, glm::uint64>();
  412. Error += run<2, glm::uint64>();
  413. Error += run<3, glm::uint64>();
  414. Error += run<4, glm::uint64>();
  415. */
  416. return Error;
  417. }
  418. }//namespace findNSB
  419. int main()
  420. {
  421. int Error = 0;
  422. Error += isPowerOfTwo::test();
  423. Error += prevPowerOfTwo::test();
  424. Error += nextPowerOfTwo::test();
  425. Error += prevMultiple::test();
  426. Error += nextMultiple::test();
  427. Error += findNSB::test();
  428. return Error;
  429. }