core_func_matrix.cpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. /// @file test/core/func_matrix.cpp
  2. /// @date 2007-01-25 / 2011-06-07
  3. #include <glm/matrix.hpp>
  4. #include <glm/gtc/matrix_transform.hpp>
  5. #include <glm/gtc/ulp.hpp>
  6. #include <glm/gtc/epsilon.hpp>
  7. #include <vector>
  8. #include <ctime>
  9. #include <cstdio>
  10. using namespace glm;
  11. int test_matrixCompMult()
  12. {
  13. int Error(0);
  14. {
  15. mat2 m(0, 1, 2, 3);
  16. mat2 n = matrixCompMult(m, m);
  17. Error += n == mat2(0, 1, 4, 9) ? 0 : 1;
  18. }
  19. {
  20. mat2x3 m(0, 1, 2, 3, 4, 5);
  21. mat2x3 n = matrixCompMult(m, m);
  22. Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1;
  23. }
  24. {
  25. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  26. mat2x4 n = matrixCompMult(m, m);
  27. Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  28. }
  29. {
  30. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  31. mat3 n = matrixCompMult(m, m);
  32. Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1;
  33. }
  34. {
  35. mat3x2 m(0, 1, 2, 3, 4, 5);
  36. mat3x2 n = matrixCompMult(m, m);
  37. Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1;
  38. }
  39. {
  40. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  41. mat3x4 n = matrixCompMult(m, m);
  42. Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  43. }
  44. {
  45. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  46. mat4 n = matrixCompMult(m, m);
  47. Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1;
  48. }
  49. {
  50. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  51. mat4x2 n = matrixCompMult(m, m);
  52. Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  53. }
  54. {
  55. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  56. mat4x3 n = matrixCompMult(m, m);
  57. Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  58. }
  59. return Error;
  60. }
  61. int test_outerProduct()
  62. {
  63. { glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); }
  64. { glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); }
  65. { glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); }
  66. { glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); }
  67. { glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); }
  68. { glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); }
  69. { glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); }
  70. { glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); }
  71. { glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); }
  72. return 0;
  73. }
  74. int test_transpose()
  75. {
  76. int Error(0);
  77. {
  78. mat2 m(0, 1, 2, 3);
  79. mat2 t = transpose(m);
  80. Error += t == mat2(0, 2, 1, 3) ? 0 : 1;
  81. }
  82. {
  83. mat2x3 m(0, 1, 2, 3, 4, 5);
  84. mat3x2 t = transpose(m);
  85. Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1;
  86. }
  87. {
  88. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  89. mat4x2 t = transpose(m);
  90. Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1;
  91. }
  92. {
  93. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  94. mat3 t = transpose(m);
  95. Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1;
  96. }
  97. {
  98. mat3x2 m(0, 1, 2, 3, 4, 5);
  99. mat2x3 t = transpose(m);
  100. Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1;
  101. }
  102. {
  103. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  104. mat4x3 t = transpose(m);
  105. Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1;
  106. }
  107. {
  108. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  109. mat4 t = transpose(m);
  110. Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1;
  111. }
  112. {
  113. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  114. mat2x4 t = transpose(m);
  115. Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1;
  116. }
  117. {
  118. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  119. mat3x4 t = transpose(m);
  120. Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1;
  121. }
  122. return Error;
  123. }
  124. int test_determinant()
  125. {
  126. return 0;
  127. }
  128. int test_inverse()
  129. {
  130. int Failed(0);
  131. glm::mat4x4 A4x4(
  132. glm::vec4(1, 0, 1, 0),
  133. glm::vec4(0, 1, 0, 0),
  134. glm::vec4(0, 0, 1, 0),
  135. glm::vec4(0, 0, 0, 1));
  136. glm::mat4x4 B4x4 = inverse(A4x4);
  137. glm::mat4x4 I4x4 = A4x4 * B4x4;
  138. Failed += I4x4 == glm::mat4x4(1) ? 0 : 1;
  139. glm::mat3x3 A3x3(
  140. glm::vec3(1, 0, 1),
  141. glm::vec3(0, 1, 0),
  142. glm::vec3(0, 0, 1));
  143. glm::mat3x3 B3x3 = glm::inverse(A3x3);
  144. glm::mat3x3 I3x3 = A3x3 * B3x3;
  145. Failed += I3x3 == glm::mat3x3(1) ? 0 : 1;
  146. glm::mat2x2 A2x2(
  147. glm::vec2(1, 1),
  148. glm::vec2(0, 1));
  149. glm::mat2x2 B2x2 = glm::inverse(A2x2);
  150. glm::mat2x2 I2x2 = A2x2 * B2x2;
  151. Failed += I2x2 == glm::mat2x2(1) ? 0 : 1;
  152. return Failed;
  153. }
  154. int test_inverse_simd()
  155. {
  156. int Error = 0;
  157. glm::mat4x4 const Identity(1);
  158. glm::mat4x4 const A4x4(
  159. glm::vec4(1, 0, 1, 0),
  160. glm::vec4(0, 1, 0, 0),
  161. glm::vec4(0, 0, 1, 0),
  162. glm::vec4(0, 0, 0, 1));
  163. glm::mat4x4 const B4x4 = glm::inverse(A4x4);
  164. glm::mat4x4 const I4x4 = A4x4 * B4x4;
  165. Error += glm::all(glm::epsilonEqual(I4x4[0], Identity[0], 0.001f)) ? 0 : 1;
  166. Error += glm::all(glm::epsilonEqual(I4x4[1], Identity[1], 0.001f)) ? 0 : 1;
  167. Error += glm::all(glm::epsilonEqual(I4x4[2], Identity[2], 0.001f)) ? 0 : 1;
  168. Error += glm::all(glm::epsilonEqual(I4x4[3], Identity[3], 0.001f)) ? 0 : 1;
  169. return Error;
  170. }
  171. template <typename VEC3, typename MAT4>
  172. int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message)
  173. {
  174. std::vector<MAT4> TestInputs;
  175. TestInputs.resize(Count);
  176. std::vector<MAT4> TestOutputs;
  177. TestOutputs.resize(TestInputs.size());
  178. VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f)));
  179. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  180. {
  181. typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1);
  182. TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis);
  183. //TestInputs[i] = glm::translate(MAT4(1), Axis * f);
  184. }
  185. std::clock_t StartTime = std::clock();
  186. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  187. TestOutputs[i] = glm::inverse(TestInputs[i]);
  188. std::clock_t EndTime = std::clock();
  189. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  190. TestOutputs[i] = TestOutputs[i] * TestInputs[i];
  191. typename MAT4::value_type Diff(0);
  192. for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry)
  193. {
  194. MAT4 i(1.0);
  195. MAT4 m(TestOutputs[Entry]);
  196. for(glm::length_t y = 0; y < m.length(); ++y)
  197. for(glm::length_t x = 0; x < m[y].length(); ++x)
  198. Diff = glm::max(m[y][x], i[y][x]);
  199. }
  200. //glm::uint Ulp = 0;
  201. //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp);
  202. printf("inverse<%s>(%f): %lu\n", Message, Diff, EndTime - StartTime);
  203. return 0;
  204. }
  205. int main()
  206. {
  207. int Error(0);
  208. Error += test_matrixCompMult();
  209. Error += test_outerProduct();
  210. Error += test_transpose();
  211. Error += test_determinant();
  212. Error += test_inverse();
  213. Error += test_inverse_simd();
  214. # ifdef NDEBUG
  215. std::size_t const Samples(1000);
  216. for(std::size_t i = 0; i < 1; ++i)
  217. {
  218. Error += test_inverse_perf<glm::vec3, glm::mat4>(Samples, i, "mat4");
  219. Error += test_inverse_perf<glm::dvec3, glm::dmat4>(Samples, i, "dmat4");
  220. }
  221. # endif//NDEBUG
  222. return Error;
  223. }