core_func_matrix.cpp 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. ///////////////////////////////////////////////////////////////////////////////////////////////////
  2. // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
  3. ///////////////////////////////////////////////////////////////////////////////////////////////////
  4. // Created : 2011-01-15
  5. // Updated : 2012-05-02
  6. // Licence : This source is under MIT licence
  7. // File : test/core/func_matrix.cpp
  8. ///////////////////////////////////////////////////////////////////////////////////////////////////
  9. #include <glm/matrix.hpp>
  10. #include <glm/gtc/matrix_transform.hpp>
  11. #include <glm/gtc/ulp.hpp>
  12. #include <vector>
  13. #include <ctime>
  14. #include <cstdio>
  15. using namespace glm;
  16. int test_matrixCompMult()
  17. {
  18. int Error(0);
  19. {
  20. mat2 m(0, 1, 2, 3);
  21. mat2 n = matrixCompMult(m, m);
  22. Error += n == mat2(0, 1, 4, 9) ? 0 : 1;
  23. }
  24. {
  25. mat2x3 m(0, 1, 2, 3, 4, 5);
  26. mat2x3 n = matrixCompMult(m, m);
  27. Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1;
  28. }
  29. {
  30. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  31. mat2x4 n = matrixCompMult(m, m);
  32. Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  33. }
  34. {
  35. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  36. mat3 n = matrixCompMult(m, m);
  37. Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1;
  38. }
  39. {
  40. mat3x2 m(0, 1, 2, 3, 4, 5);
  41. mat3x2 n = matrixCompMult(m, m);
  42. Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1;
  43. }
  44. {
  45. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  46. mat3x4 n = matrixCompMult(m, m);
  47. Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  48. }
  49. {
  50. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  51. mat4 n = matrixCompMult(m, m);
  52. Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1;
  53. }
  54. {
  55. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  56. mat4x2 n = matrixCompMult(m, m);
  57. Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  58. }
  59. {
  60. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  61. mat4x3 n = matrixCompMult(m, m);
  62. Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  63. }
  64. return Error;
  65. }
  66. int test_outerProduct()
  67. {
  68. return 0;
  69. }
  70. int test_transpose()
  71. {
  72. int Error(0);
  73. {
  74. mat2 m(0, 1, 2, 3);
  75. mat2 t = transpose(m);
  76. Error += t == mat2(0, 2, 1, 3) ? 0 : 1;
  77. }
  78. {
  79. mat2x3 m(0, 1, 2, 3, 4, 5);
  80. mat3x2 t = transpose(m);
  81. Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1;
  82. }
  83. {
  84. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  85. mat4x2 t = transpose(m);
  86. Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1;
  87. }
  88. {
  89. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  90. mat3 t = transpose(m);
  91. Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1;
  92. }
  93. {
  94. mat3x2 m(0, 1, 2, 3, 4, 5);
  95. mat2x3 t = transpose(m);
  96. Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1;
  97. }
  98. {
  99. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  100. mat4x3 t = transpose(m);
  101. Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1;
  102. }
  103. {
  104. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  105. mat4 t = transpose(m);
  106. Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1;
  107. }
  108. {
  109. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  110. mat2x4 t = transpose(m);
  111. Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1;
  112. }
  113. {
  114. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  115. mat3x4 t = transpose(m);
  116. Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1;
  117. }
  118. return Error;
  119. }
  120. int test_determinant()
  121. {
  122. return 0;
  123. }
  124. int test_inverse()
  125. {
  126. int Failed(0);
  127. glm::mat4x4 A4x4(
  128. glm::vec4(1, 0, 1, 0),
  129. glm::vec4(0, 1, 0, 0),
  130. glm::vec4(0, 0, 1, 0),
  131. glm::vec4(0, 0, 0, 1));
  132. glm::mat4x4 B4x4 = inverse(A4x4);
  133. glm::mat4x4 I4x4 = A4x4 * B4x4;
  134. Failed += I4x4 == glm::mat4x4(1) ? 0 : 1;
  135. glm::mat3x3 A3x3(
  136. glm::vec3(1, 0, 1),
  137. glm::vec3(0, 1, 0),
  138. glm::vec3(0, 0, 1));
  139. glm::mat3x3 B3x3 = glm::inverse(A3x3);
  140. glm::mat3x3 I3x3 = A3x3 * B3x3;
  141. Failed += I3x3 == glm::mat3x3(1) ? 0 : 1;
  142. glm::mat2x2 A2x2(
  143. glm::vec2(1, 1),
  144. glm::vec2(0, 1));
  145. glm::mat2x2 B2x2 = glm::inverse(A2x2);
  146. glm::mat2x2 I2x2 = A2x2 * B2x2;
  147. Failed += I2x2 == glm::mat2x2(1) ? 0 : 1;
  148. return Failed;
  149. }
  150. std::size_t const Count(10000000);
  151. template <typename VEC3, typename MAT4>
  152. int test_inverse_perf(std::size_t Instance, char const * Message)
  153. {
  154. std::vector<MAT4> TestInputs;
  155. TestInputs.resize(Count);
  156. std::vector<MAT4> TestOutputs;
  157. TestOutputs.resize(TestInputs.size());
  158. VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f)));
  159. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  160. {
  161. typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1);
  162. TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis);
  163. //TestInputs[i] = glm::translate(MAT4(1), Axis * f);
  164. }
  165. std::clock_t StartTime = std::clock();
  166. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  167. TestOutputs[i] = glm::inverse(TestInputs[i]);
  168. std::clock_t EndTime = std::clock();
  169. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  170. TestOutputs[i] = TestOutputs[i] * TestInputs[i];
  171. typename MAT4::value_type Diff(0);
  172. for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry)
  173. {
  174. MAT4 i(1.0);
  175. MAT4 m(TestOutputs[Entry]);
  176. for(glm::length_t y = 0; y < m.length(); ++y)
  177. for(glm::length_t x = 0; x < m[y].length(); ++x)
  178. Diff = glm::max(m[y][x], i[y][x]);
  179. }
  180. //glm::uint Ulp = 0;
  181. //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp);
  182. printf("inverse<%s>(%f): %d\n", Message, Diff, EndTime - StartTime);
  183. return 0;
  184. };
  185. int main()
  186. {
  187. int Error(0);
  188. Error += test_matrixCompMult();
  189. Error += test_outerProduct();
  190. Error += test_transpose();
  191. Error += test_determinant();
  192. Error += test_inverse();
  193. for(std::size_t i = 0; i < 1; ++i)
  194. {
  195. Error += test_inverse_perf<glm::vec3, glm::mat4>(i, "mat4");
  196. Error += test_inverse_perf<glm::dvec3, glm::dmat4>(i, "dmat4");
  197. }
  198. return Error;
  199. }