ext_vector_integer.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. #include <glm/ext/vector_integer.hpp>
  2. #include <glm/ext/scalar_int_sized.hpp>
  3. #include <glm/ext/scalar_uint_sized.hpp>
  4. #include <vector>
  5. #include <ctime>
  6. #include <cstdio>
  7. namespace isPowerOfTwo
  8. {
  9. template<typename genType>
  10. struct type
  11. {
  12. genType Value;
  13. bool Return;
  14. };
  15. int test_int16()
  16. {
  17. type<glm::int16> const Data[] =
  18. {
  19. { 0x0001, true },
  20. { 0x0002, true },
  21. { 0x0004, true },
  22. { 0x0080, true },
  23. { 0x0000, true },
  24. { 0x0003, false }
  25. };
  26. int Error = 0;
  27. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
  28. {
  29. bool Result = glm::isPowerOfTwo(Data[i].Value);
  30. Error += Data[i].Return == Result ? 0 : 1;
  31. }
  32. return Error;
  33. }
  34. int test_uint16()
  35. {
  36. type<glm::uint16> const Data[] =
  37. {
  38. { 0x0001, true },
  39. { 0x0002, true },
  40. { 0x0004, true },
  41. { 0x0000, true },
  42. { 0x0000, true },
  43. { 0x0003, false }
  44. };
  45. int Error = 0;
  46. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
  47. {
  48. bool Result = glm::isPowerOfTwo(Data[i].Value);
  49. Error += Data[i].Return == Result ? 0 : 1;
  50. }
  51. return Error;
  52. }
  53. int test_int32()
  54. {
  55. type<int> const Data[] =
  56. {
  57. { 0x00000001, true },
  58. { 0x00000002, true },
  59. { 0x00000004, true },
  60. { 0x0000000f, false },
  61. { 0x00000000, true },
  62. { 0x00000003, false }
  63. };
  64. int Error = 0;
  65. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
  66. {
  67. bool Result = glm::isPowerOfTwo(Data[i].Value);
  68. Error += Data[i].Return == Result ? 0 : 1;
  69. }
  70. return Error;
  71. }
  72. int test_uint32()
  73. {
  74. type<glm::uint> const Data[] =
  75. {
  76. { 0x00000001, true },
  77. { 0x00000002, true },
  78. { 0x00000004, true },
  79. { 0x80000000, true },
  80. { 0x00000000, true },
  81. { 0x00000003, false }
  82. };
  83. int Error = 0;
  84. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
  85. {
  86. bool Result = glm::isPowerOfTwo(Data[i].Value);
  87. Error += Data[i].Return == Result ? 0 : 1;
  88. }
  89. return Error;
  90. }
  91. int test()
  92. {
  93. int Error = 0;
  94. Error += test_int16();
  95. Error += test_uint16();
  96. Error += test_int32();
  97. Error += test_uint32();
  98. return Error;
  99. }
  100. }//isPowerOfTwo
  101. namespace prevPowerOfTwo
  102. {
  103. template <typename T>
  104. int run()
  105. {
  106. int Error = 0;
  107. T const A = glm::prevPowerOfTwo(static_cast<T>(7));
  108. Error += A == static_cast<T>(4) ? 0 : 1;
  109. T const B = glm::prevPowerOfTwo(static_cast<T>(15));
  110. Error += B == static_cast<T>(8) ? 0 : 1;
  111. T const C = glm::prevPowerOfTwo(static_cast<T>(31));
  112. Error += C == static_cast<T>(16) ? 0 : 1;
  113. T const D = glm::prevPowerOfTwo(static_cast<T>(32));
  114. Error += D == static_cast<T>(32) ? 0 : 1;
  115. return Error;
  116. }
  117. int test()
  118. {
  119. int Error = 0;
  120. Error += run<glm::int8>();
  121. Error += run<glm::int16>();
  122. Error += run<glm::int32>();
  123. Error += run<glm::int64>();
  124. Error += run<glm::uint8>();
  125. Error += run<glm::uint16>();
  126. Error += run<glm::uint32>();
  127. Error += run<glm::uint64>();
  128. return Error;
  129. }
  130. }//namespace prevPowerOfTwo
  131. namespace nextPowerOfTwo
  132. {
  133. template <typename T>
  134. int run()
  135. {
  136. int Error = 0;
  137. T const A = glm::nextPowerOfTwo(static_cast<T>(7));
  138. Error += A == static_cast<T>(8) ? 0 : 1;
  139. T const B = glm::nextPowerOfTwo(static_cast<T>(15));
  140. Error += B == static_cast<T>(16) ? 0 : 1;
  141. T const C = glm::nextPowerOfTwo(static_cast<T>(31));
  142. Error += C == static_cast<T>(32) ? 0 : 1;
  143. T const D = glm::nextPowerOfTwo(static_cast<T>(32));
  144. Error += D == static_cast<T>(32) ? 0 : 1;
  145. return Error;
  146. }
  147. int test()
  148. {
  149. int Error = 0;
  150. Error += run<glm::int8>();
  151. Error += run<glm::int16>();
  152. Error += run<glm::int32>();
  153. Error += run<glm::int64>();
  154. Error += run<glm::uint8>();
  155. Error += run<glm::uint16>();
  156. Error += run<glm::uint32>();
  157. Error += run<glm::uint64>();
  158. return Error;
  159. }
  160. }//namespace nextPowerOfTwo
  161. namespace prevMultiple
  162. {
  163. template<typename genIUType>
  164. struct type
  165. {
  166. genIUType Source;
  167. genIUType Multiple;
  168. genIUType Return;
  169. };
  170. template <typename T>
  171. int run()
  172. {
  173. type<T> const Data[] =
  174. {
  175. { 8, 3, 6 },
  176. { 7, 7, 7 }
  177. };
  178. int Error = 0;
  179. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  180. {
  181. glm::vec<4, T> const Result = glm::prevMultiple(glm::vec<4, T>(Data[i].Source), Data[i].Multiple);
  182. Error += glm::vec<4, T>(Data[i].Return) == Result ? 0 : 1;
  183. }
  184. return Error;
  185. }
  186. int test()
  187. {
  188. int Error = 0;
  189. Error += run<glm::int8>();
  190. Error += run<glm::int16>();
  191. Error += run<glm::int32>();
  192. Error += run<glm::int64>();
  193. Error += run<glm::uint8>();
  194. Error += run<glm::uint16>();
  195. Error += run<glm::uint32>();
  196. Error += run<glm::uint64>();
  197. return Error;
  198. }
  199. }//namespace prevMultiple
  200. namespace nextMultiple
  201. {
  202. template<typename genIUType>
  203. struct type
  204. {
  205. genIUType Source;
  206. genIUType Multiple;
  207. genIUType Return;
  208. };
  209. template <typename T>
  210. int run()
  211. {
  212. type<T> const Data[] =
  213. {
  214. { 8, 3, 6 },
  215. { 7, 7, 7 }
  216. };
  217. int Error = 0;
  218. for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
  219. {
  220. glm::vec<4, T> const Result = glm::nextMultiple(glm::vec<4, T>(Data[i].Source), Data[i].Multiple);
  221. Error += glm::vec<4, T>(Data[i].Return) == Result ? 0 : 1;
  222. }
  223. return Error;
  224. }
  225. int test()
  226. {
  227. int Error = 0;
  228. Error += run<glm::int8>();
  229. Error += run<glm::int16>();
  230. Error += run<glm::int32>();
  231. Error += run<glm::int64>();
  232. Error += run<glm::uint8>();
  233. Error += run<glm::uint16>();
  234. Error += run<glm::uint32>();
  235. Error += run<glm::uint64>();
  236. return Error;
  237. }
  238. }//namespace nextMultiple
  239. int main()
  240. {
  241. int Error = 0;
  242. Error += isPowerOfTwo::test();
  243. Error += prevPowerOfTwo::test();
  244. Error += nextPowerOfTwo::test();
  245. Error += prevMultiple::test();
  246. Error += nextMultiple::test();
  247. return Error;
  248. }