compatibility.hpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. ///////////////////////////////////////////////////////////////////////////////////
  2. /// OpenGL Mathematics (glm.g-truc.net)
  3. ///
  4. /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
  5. /// Permission is hereby granted, free of charge, to any person obtaining a copy
  6. /// of this software and associated documentation files (the "Software"), to deal
  7. /// in the Software without restriction, including without limitation the rights
  8. /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. /// copies of the Software, and to permit persons to whom the Software is
  10. /// furnished to do so, subject to the following conditions:
  11. ///
  12. /// The above copyright notice and this permission notice shall be included in
  13. /// all copies or substantial portions of the Software.
  14. ///
  15. /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. /// THE SOFTWARE.
  22. ///
  23. /// @ref gtx_compatibility
  24. /// @file glm/gtx/compatibility.hpp
  25. /// @date 2007-01-24 / 2011-06-07
  26. /// @author Christophe Riccio
  27. ///
  28. /// @see core (dependence)
  29. /// @see gtc_half_float (dependence)
  30. ///
  31. /// @defgroup gtx_compatibility GLM_GTX_compatibility
  32. /// @ingroup gtx
  33. ///
  34. /// @brief Provide functions to increase the compatibility with Cg and HLSL languages
  35. ///
  36. /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.
  37. ///////////////////////////////////////////////////////////////////////////////////
  38. #pragma once
  39. // Dependency:
  40. #include "../glm.hpp"
  41. #include "../gtc/quaternion.hpp"
  42. #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
  43. # pragma message("GLM: GLM_GTX_compatibility extension included")
  44. #endif
  45. #if(GLM_COMPILER & GLM_COMPILER_VC)
  46. # include <cfloat>
  47. #elif(GLM_COMPILER & GLM_COMPILER_GCC)
  48. # include <cmath>
  49. # if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
  50. # undef isfinite
  51. # endif
  52. #endif//GLM_COMPILER
  53. namespace glm
  54. {
  55. /// @addtogroup gtx_compatibility
  56. /// @{
  57. template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  58. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  59. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  60. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  61. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  62. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  63. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
  64. template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions.
  65. template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
  66. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
  67. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
  68. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
  69. template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
  70. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
  71. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
  72. template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
  73. template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
  74. template <typename T, precision P> GLM_FUNC_DECL detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
  75. template <typename T, precision P> GLM_FUNC_DECL detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
  76. template <typename T, precision P> GLM_FUNC_DECL detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
  77. typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
  78. typedef detail::tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
  79. typedef detail::tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
  80. typedef detail::tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
  81. typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
  82. typedef detail::tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
  83. typedef detail::tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
  84. typedef detail::tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
  85. typedef detail::tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
  86. typedef detail::tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
  87. typedef detail::tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
  88. typedef detail::tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
  89. typedef detail::tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
  90. typedef detail::tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
  91. typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
  92. typedef detail::tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
  93. typedef detail::tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
  94. typedef detail::tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
  95. typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
  96. typedef detail::tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
  97. typedef detail::tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
  98. typedef detail::tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
  99. typedef detail::tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
  100. typedef detail::tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
  101. typedef detail::tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
  102. typedef detail::tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
  103. typedef detail::tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
  104. typedef detail::tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
  105. typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
  106. typedef detail::tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
  107. typedef detail::tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
  108. typedef detail::tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
  109. typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
  110. typedef detail::tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
  111. typedef detail::tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
  112. typedef detail::tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
  113. typedef detail::tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
  114. typedef detail::tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
  115. typedef detail::tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
  116. typedef detail::tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
  117. typedef detail::tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
  118. typedef detail::tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
  119. typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
  120. typedef detail::tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
  121. typedef detail::tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
  122. typedef detail::tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
  123. typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
  124. typedef detail::tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
  125. typedef detail::tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
  126. typedef detail::tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
  127. typedef detail::tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
  128. typedef detail::tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
  129. typedef detail::tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
  130. typedef detail::tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
  131. typedef detail::tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
  132. typedef detail::tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
  133. /// @}
  134. }//namespace glm
  135. #include "compatibility.inl"