core_func_matrix.cpp 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. ///////////////////////////////////////////////////////////////////////////////////////////////////
  2. // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
  3. ///////////////////////////////////////////////////////////////////////////////////////////////////
  4. // Created : 2011-01-15
  5. // Updated : 2012-05-02
  6. // Licence : This source is under MIT licence
  7. // File : test/core/func_matrix.cpp
  8. ///////////////////////////////////////////////////////////////////////////////////////////////////
  9. #define GLM_FORCE_RADIANS
  10. #include <glm/matrix.hpp>
  11. #include <glm/gtc/matrix_transform.hpp>
  12. #include <glm/gtc/ulp.hpp>
  13. #include <vector>
  14. #include <ctime>
  15. #include <cstdio>
  16. using namespace glm;
  17. int test_matrixCompMult()
  18. {
  19. int Error(0);
  20. {
  21. mat2 m(0, 1, 2, 3);
  22. mat2 n = matrixCompMult(m, m);
  23. Error += n == mat2(0, 1, 4, 9) ? 0 : 1;
  24. }
  25. {
  26. mat2x3 m(0, 1, 2, 3, 4, 5);
  27. mat2x3 n = matrixCompMult(m, m);
  28. Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1;
  29. }
  30. {
  31. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  32. mat2x4 n = matrixCompMult(m, m);
  33. Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  34. }
  35. {
  36. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  37. mat3 n = matrixCompMult(m, m);
  38. Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1;
  39. }
  40. {
  41. mat3x2 m(0, 1, 2, 3, 4, 5);
  42. mat3x2 n = matrixCompMult(m, m);
  43. Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1;
  44. }
  45. {
  46. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  47. mat3x4 n = matrixCompMult(m, m);
  48. Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  49. }
  50. {
  51. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  52. mat4 n = matrixCompMult(m, m);
  53. Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1;
  54. }
  55. {
  56. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  57. mat4x2 n = matrixCompMult(m, m);
  58. Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
  59. }
  60. {
  61. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  62. mat4x3 n = matrixCompMult(m, m);
  63. Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
  64. }
  65. return Error;
  66. }
  67. int test_outerProduct()
  68. {
  69. return 0;
  70. }
  71. int test_transpose()
  72. {
  73. int Error(0);
  74. {
  75. mat2 m(0, 1, 2, 3);
  76. mat2 t = transpose(m);
  77. Error += t == mat2(0, 2, 1, 3) ? 0 : 1;
  78. }
  79. {
  80. mat2x3 m(0, 1, 2, 3, 4, 5);
  81. mat3x2 t = transpose(m);
  82. Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1;
  83. }
  84. {
  85. mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
  86. mat4x2 t = transpose(m);
  87. Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1;
  88. }
  89. {
  90. mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
  91. mat3 t = transpose(m);
  92. Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1;
  93. }
  94. {
  95. mat3x2 m(0, 1, 2, 3, 4, 5);
  96. mat2x3 t = transpose(m);
  97. Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1;
  98. }
  99. {
  100. mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  101. mat4x3 t = transpose(m);
  102. Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1;
  103. }
  104. {
  105. mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  106. mat4 t = transpose(m);
  107. Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1;
  108. }
  109. {
  110. mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
  111. mat2x4 t = transpose(m);
  112. Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1;
  113. }
  114. {
  115. mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
  116. mat3x4 t = transpose(m);
  117. Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1;
  118. }
  119. return Error;
  120. }
  121. int test_determinant()
  122. {
  123. return 0;
  124. }
  125. int test_inverse()
  126. {
  127. int Failed(0);
  128. glm::mat4x4 A4x4(
  129. glm::vec4(1, 0, 1, 0),
  130. glm::vec4(0, 1, 0, 0),
  131. glm::vec4(0, 0, 1, 0),
  132. glm::vec4(0, 0, 0, 1));
  133. glm::mat4x4 B4x4 = inverse(A4x4);
  134. glm::mat4x4 I4x4 = A4x4 * B4x4;
  135. Failed += I4x4 == glm::mat4x4(1) ? 0 : 1;
  136. glm::mat3x3 A3x3(
  137. glm::vec3(1, 0, 1),
  138. glm::vec3(0, 1, 0),
  139. glm::vec3(0, 0, 1));
  140. glm::mat3x3 B3x3 = glm::inverse(A3x3);
  141. glm::mat3x3 I3x3 = A3x3 * B3x3;
  142. Failed += I3x3 == glm::mat3x3(1) ? 0 : 1;
  143. glm::mat2x2 A2x2(
  144. glm::vec2(1, 1),
  145. glm::vec2(0, 1));
  146. glm::mat2x2 B2x2 = glm::inverse(A2x2);
  147. glm::mat2x2 I2x2 = A2x2 * B2x2;
  148. Failed += I2x2 == glm::mat2x2(1) ? 0 : 1;
  149. return Failed;
  150. }
  151. std::size_t const Count(10000000);
  152. template <typename VEC3, typename MAT4>
  153. int test_inverse_perf(std::size_t Instance, char const * Message)
  154. {
  155. std::vector<MAT4> TestInputs;
  156. TestInputs.resize(Count);
  157. std::vector<MAT4> TestOutputs;
  158. TestOutputs.resize(TestInputs.size());
  159. VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f)));
  160. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  161. {
  162. typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1);
  163. TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis);
  164. //TestInputs[i] = glm::translate(MAT4(1), Axis * f);
  165. }
  166. std::clock_t StartTime = std::clock();
  167. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  168. TestOutputs[i] = glm::inverse(TestInputs[i]);
  169. std::clock_t EndTime = std::clock();
  170. for(std::size_t i = 0; i < TestInputs.size(); ++i)
  171. TestOutputs[i] = TestOutputs[i] * TestInputs[i];
  172. typename MAT4::value_type Diff(0);
  173. for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry)
  174. {
  175. MAT4 i(1.0);
  176. MAT4 m(TestOutputs[Entry]);
  177. for(glm::length_t y = 0; y < m.length(); ++y)
  178. for(glm::length_t x = 0; x < m[y].length(); ++x)
  179. Diff = glm::max(m[y][x], i[y][x]);
  180. }
  181. //glm::uint Ulp = 0;
  182. //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp);
  183. printf("inverse<%s>(%f): %d\n", Message, Diff, EndTime - StartTime);
  184. return 0;
  185. };
  186. int main()
  187. {
  188. int Error(0);
  189. Error += test_matrixCompMult();
  190. Error += test_outerProduct();
  191. Error += test_transpose();
  192. Error += test_determinant();
  193. Error += test_inverse();
  194. for(std::size_t i = 0; i < 1; ++i)
  195. {
  196. Error += test_inverse_perf<glm::vec3, glm::mat4>(i, "mat4");
  197. Error += test_inverse_perf<glm::dvec3, glm::dmat4>(i, "dmat4");
  198. }
  199. return Error;
  200. }