func_exponential.cpp 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. ///////////////////////////////////////////////////////////////////////////////////////////////////
  2. // OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
  3. ///////////////////////////////////////////////////////////////////////////////////////////////////
  4. // Created : 2008-08-31
  5. // Updated : 2008-08-31
  6. // Licence : This source is under MIT License
  7. // File : test/core/func_exponential.cpp
  8. ///////////////////////////////////////////////////////////////////////////////////////////////////
  9. #include "../precompiled.hpp"
  10. #include <glm/core/func_exponential.hpp>
  11. namespace glm{
  12. namespace test{
  13. static const float epsilon = 0.00001f;
  14. bool test_pow_1()
  15. {
  16. float power = glm::pow(2.f, 2.f);
  17. if(power <= 4.f + epsilon && power >= 4.f - epsilon)
  18. return true;
  19. return false;
  20. }
  21. bool test_pow_2()
  22. {
  23. glm::vec2 power = glm::pow(glm::vec2(2.f, 2.f), glm::vec2(2.f, 2.f));
  24. if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon &&
  25. power.y <= 4.f + epsilon && power.y >= 4.f - epsilon)
  26. return true;
  27. return false;
  28. }
  29. bool test_pow_3()
  30. {
  31. glm::vec3 power = glm::pow(glm::vec3(2.f, 2.f, 2.f), glm::vec3(2.f, 2.f, 2.f));
  32. if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon &&
  33. power.y <= 4.f + epsilon && power.y >= 4.f - epsilon &&
  34. power.z <= 4.f + epsilon && power.z >= 4.f - epsilon)
  35. return true;
  36. return false;
  37. }
  38. bool test_pow_4()
  39. {
  40. glm::vec4 power = glm::pow(glm::vec4(2.f, 2.f, 2.f, 2.f), glm::vec4(2.f, 2.f, 2.f, 2.f));
  41. if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon &&
  42. power.y <= 4.f + epsilon && power.y >= 4.f - epsilon &&
  43. power.z <= 4.f + epsilon && power.z >= 4.f - epsilon &&
  44. power.w <= 4.f + epsilon && power.w >= 4.f - epsilon)
  45. return true;
  46. return false;
  47. }
  48. bool test_exp_1()
  49. {
  50. float result = glm::exp(0.f);
  51. if(result > 1.f + epsilon || result < 1.f - epsilon)
  52. return false;
  53. return true;
  54. }
  55. bool test_exp_2()
  56. {
  57. glm::vec2 result = glm::exp(glm::vec2(0.f, 0.f));
  58. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  59. result.y > 1.f + epsilon || result.y < 1.f - epsilon)
  60. return false;
  61. return true;
  62. }
  63. bool test_exp_3()
  64. {
  65. glm::vec3 result = glm::exp(glm::vec3(0.f, 0.f, 0.f));
  66. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  67. result.y > 1.f + epsilon || result.y < 1.f - epsilon ||
  68. result.z > 1.f + epsilon || result.z < 1.f - epsilon)
  69. return false;
  70. return true;
  71. }
  72. bool test_exp_4()
  73. {
  74. glm::vec4 result = glm::exp(glm::vec4(0.f, 0.f, 0.f, 0.f));
  75. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  76. result.y > 1.f + epsilon || result.y < 1.f - epsilon ||
  77. result.z > 1.f + epsilon || result.z < 1.f - epsilon ||
  78. result.w > 1.f + epsilon || result.w < 1.f - epsilon)
  79. return false;
  80. return true;
  81. }
  82. bool test_log_1()
  83. {
  84. float result = glm::log(1.f);
  85. if(result > epsilon || result < -epsilon)
  86. return false;
  87. return true;
  88. }
  89. bool test_log_2()
  90. {
  91. glm::vec2 result = glm::log(glm::vec2(1.f, 1.f));
  92. if(result.x > epsilon || result.x < -epsilon ||
  93. result.y > epsilon || result.y < -epsilon)
  94. return false;
  95. return true;
  96. }
  97. bool test_log_3()
  98. {
  99. glm::vec3 result = glm::log(glm::vec3(1.f, 1.f, 1.f));
  100. if(result.x > epsilon || result.x < -epsilon ||
  101. result.y > epsilon || result.y < -epsilon ||
  102. result.z > epsilon || result.z < -epsilon)
  103. return false;
  104. return true;
  105. }
  106. bool test_log_4()
  107. {
  108. glm::vec4 result = glm::log(glm::vec4(1.f, 1.f, 1.f, 1.f));
  109. if(result.x > epsilon || result.x < -epsilon ||
  110. result.y > epsilon || result.y < -epsilon ||
  111. result.z > epsilon || result.z < -epsilon ||
  112. result.w > epsilon || result.w < -epsilon)
  113. return false;
  114. return true;
  115. }
  116. bool test_exp2_1()
  117. {
  118. float result = glm::exp2(2.f);
  119. if(result > 4.f + epsilon || result < 4.f - epsilon)
  120. return false;
  121. return true;
  122. }
  123. bool test_exp2_2()
  124. {
  125. glm::vec2 result = glm::exp2(glm::vec2(2.f, 2.f));
  126. if(result.x > 4.f + epsilon || result.x < 4.f - epsilon ||
  127. result.y > 4.f + epsilon || result.y < 4.f - epsilon)
  128. return false;
  129. return true;
  130. }
  131. bool test_exp2_3()
  132. {
  133. glm::vec3 result = glm::exp2(glm::vec3(2.f, 2.f, 2.f));
  134. if(result.x > 4.f + epsilon || result.x < 4.f - epsilon ||
  135. result.y > 4.f + epsilon || result.y < 4.f - epsilon ||
  136. result.z > 4.f + epsilon || result.z < 4.f - epsilon)
  137. return false;
  138. return true;
  139. }
  140. bool test_exp2_4()
  141. {
  142. glm::vec4 result = glm::exp2(glm::vec4(2.f, 2.f, 2.f, 2.f));
  143. if(result.x > 4.f + epsilon || result.x < 4.f - epsilon ||
  144. result.y > 4.f + epsilon || result.y < 4.f - epsilon ||
  145. result.z > 4.f + epsilon || result.z < 4.f - epsilon ||
  146. result.w > 4.f + epsilon || result.w < 4.f - epsilon)
  147. return false;
  148. return true;
  149. }
  150. bool test_log2_1()
  151. {
  152. float result = glm::log2(2.f);
  153. if(result > 1.f + epsilon || result < 1.f - epsilon)
  154. return false;
  155. return true;
  156. }
  157. bool test_log2_2()
  158. {
  159. glm::vec2 result = glm::log2(glm::vec2(2.f, 4.f));
  160. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  161. result.y > 2.f + epsilon || result.y < 2.f - epsilon)
  162. return false;
  163. return true;
  164. }
  165. bool test_log2_3()
  166. {
  167. glm::vec3 result = glm::log2(glm::vec3(2.f, 4.f, 8.f));
  168. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  169. result.y > 2.f + epsilon || result.y < 2.f - epsilon ||
  170. result.z > 3.f + epsilon || result.z < 3.f - epsilon)
  171. return false;
  172. return true;
  173. }
  174. bool test_log2_4()
  175. {
  176. glm::vec4 result = glm::log2(glm::vec4(2.f, 4.f, 8.f, 16.f));
  177. if(result.x > 1.f + epsilon || result.x < 1.f - epsilon ||
  178. result.y > 2.f + epsilon || result.y < 2.f - epsilon ||
  179. result.z > 3.f + epsilon || result.z < 3.f - epsilon ||
  180. result.w > 4.f + epsilon || result.w < 4.f - epsilon)
  181. return false;
  182. return true;
  183. }
  184. bool test_sqrt_1()
  185. {
  186. float result = glm::sqrt(4.f);
  187. if(result < 2.f - epsilon && result > 2.f + epsilon)
  188. return false;
  189. return true;
  190. }
  191. bool test_sqrt_2()
  192. {
  193. glm::vec2 result = glm::sqrt(glm::vec2(4.f, 4.f));
  194. if(result.x < 2.f - epsilon && result.x > 2.f + epsilon &&
  195. result.y < 2.f - epsilon && result.y > 2.f + epsilon)
  196. return false;
  197. return true;
  198. }
  199. bool test_sqrt_3()
  200. {
  201. glm::vec3 result = glm::sqrt(glm::vec3(4.f, 4.f, 4.f));
  202. if(result.x < 2.f - epsilon && result.x > 2.f + epsilon &&
  203. result.y < 2.f - epsilon && result.y > 2.f + epsilon &&
  204. result.z < 2.f - epsilon && result.z > 2.f + epsilon)
  205. return false;
  206. return true;
  207. }
  208. bool test_sqrt_4()
  209. {
  210. glm::vec4 result = glm::sqrt(glm::vec4(4.f, 4.f, 4.f, 4.f));
  211. if(result.x < 2.f - epsilon && result.x > 2.f + epsilon &&
  212. result.y < 2.f - epsilon && result.y > 2.f + epsilon &&
  213. result.z < 2.f - epsilon && result.z > 2.f + epsilon &&
  214. result.w < 2.f - epsilon && result.w > 2.f + epsilon)
  215. return false;
  216. return true;
  217. }
  218. bool test_inversesqrt_1()
  219. {
  220. float result = glm::inversesqrt(4.f);
  221. if(result < 0.5f - epsilon && result > 0.5f + epsilon)
  222. return false;
  223. return true;
  224. }
  225. bool test_inversesqrt_2()
  226. {
  227. glm::vec2 result = glm::inversesqrt(glm::vec2(4.f, 4.f));
  228. if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon &&
  229. result.y < 0.5f - epsilon && result.y > 0.5f + epsilon)
  230. return false;
  231. return true;
  232. }
  233. bool test_inversesqrt_3()
  234. {
  235. glm::vec3 result = glm::inversesqrt(glm::vec3(4.f, 4.f, 4.f));
  236. if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon &&
  237. result.y < 0.5f - epsilon && result.y > 0.5f + epsilon &&
  238. result.z < 0.5f - epsilon && result.z > 0.5f + epsilon)
  239. return false;
  240. return true;
  241. }
  242. bool test_inversesqrt_4()
  243. {
  244. glm::vec4 result = glm::inversesqrt(glm::vec4(4.f, 4.f, 4.f, 4.f));
  245. if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon &&
  246. result.y < 0.5f - epsilon && result.y > 0.5f + epsilon &&
  247. result.z < 0.5f - epsilon && result.z > 0.5f + epsilon &&
  248. result.w < 0.5f - epsilon && result.w > 0.5f + epsilon)
  249. return false;
  250. return true;
  251. }
  252. void main_core_func_exponential()
  253. {
  254. assert(test_pow_1());
  255. assert(test_pow_2());
  256. assert(test_pow_3());
  257. assert(test_pow_4());
  258. assert(test_exp_1());
  259. assert(test_exp_2());
  260. assert(test_exp_3());
  261. assert(test_exp_4());
  262. assert(test_log_1());
  263. assert(test_log_2());
  264. assert(test_log_3());
  265. assert(test_log_4());
  266. assert(test_exp2_1());
  267. assert(test_exp2_2());
  268. assert(test_exp2_3());
  269. assert(test_exp2_4());
  270. assert(test_log2_1());
  271. assert(test_log2_2());
  272. assert(test_log2_3());
  273. assert(test_log2_4());
  274. assert(test_sqrt_1());
  275. assert(test_sqrt_2());
  276. assert(test_sqrt_3());
  277. assert(test_sqrt_4());
  278. assert(test_inversesqrt_1());
  279. assert(test_inversesqrt_2());
  280. assert(test_inversesqrt_3());
  281. assert(test_inversesqrt_4());
  282. }
  283. }//namespace test
  284. }//namespace glm