func_trigonometric.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. ///////////////////////////////////////////////////////////////////////////////////////////////////
  2. // OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
  3. ///////////////////////////////////////////////////////////////////////////////////////////////////
  4. // Created : 2008-08-31
  5. // Updated : 2008-08-31
  6. // Licence : This source is under MIT License
  7. // File : test/core/func_trigonometric.cpp
  8. ///////////////////////////////////////////////////////////////////////////////////////////////////
  9. #include "../precompiled.hpp"
  10. #include <glm/core/func_trigonometric.hpp>
  11. namespace glm{
  12. namespace test{
  13. static const float epsilon = 0.00001f;
  14. static const float pi = 3.14159265358979323846f;
  15. bool test_radians_1()
  16. {
  17. float angle = radians(360.f);
  18. if(angle < 2.0f * pi + epsilon && angle > 2.0f * pi - epsilon)
  19. return true;
  20. return false;
  21. }
  22. bool test_radians_2()
  23. {
  24. vec2 angle = radians(vec2(360.f, 180.f));
  25. if(angle.x < 2.0f * pi + epsilon && angle.x > 2.0f * pi - epsilon &&
  26. angle.y < pi + epsilon && angle.y > pi - epsilon)
  27. return true;
  28. return false;
  29. }
  30. bool test_radians_3()
  31. {
  32. vec3 angle = radians(vec3(360.f, 180.f, 0.f));
  33. if(angle.x < 2.0f * pi + epsilon && angle.x > 2.0f * pi - epsilon &&
  34. angle.y < pi + epsilon && angle.y > pi - epsilon &&
  35. angle.z == 0.f)
  36. return true;
  37. return false;
  38. }
  39. bool test_radians_4()
  40. {
  41. vec4 angle = radians(vec4 (360.f, 180.f, 0.f, -180.f));
  42. if(angle.x < 2.0f * pi + epsilon && angle.x > 2.0f * pi - epsilon &&
  43. angle.y < pi + epsilon && angle.y > pi - epsilon &&
  44. angle.z == 0.f &&
  45. angle.w > -(pi + epsilon) && angle.w < -(pi - epsilon))
  46. return true;
  47. return false;
  48. }
  49. bool test_degrees_1()
  50. {
  51. float angle1 = degrees(pi * 2.f);
  52. float angle2 = degrees(0.f);
  53. if(angle1 < 360.1f && angle1 > 359.9f && angle2 == 0.0f)
  54. return true;
  55. return false;
  56. }
  57. bool test_degrees_2()
  58. {
  59. vec2 angle = degrees(vec2 (pi * 2.f, pi));
  60. if(angle.x < 360.1f && angle.x > 359.9f &&
  61. angle.y < 180.1f && angle.y > 179.9f)
  62. return true;
  63. return false;
  64. }
  65. bool test_degrees_3()
  66. {
  67. vec3 angle = degrees(vec3 (pi * 2.f, pi, 0.f));
  68. if(angle.x < 360.1f && angle.x > 359.9f &&
  69. angle.y < 180.1f && angle.y > 179.9f &&
  70. angle.z == 0.f)
  71. return true;
  72. return false;
  73. }
  74. bool test_degrees_4()
  75. {
  76. vec4 angle = degrees(vec4 (pi * 2.f, pi, 0.f, -pi));
  77. if(angle.x < 360.1f && angle.x > 359.9f &&
  78. angle.y < 180.1f && angle.y > 179.9f &&
  79. angle.z == 0.f &&
  80. angle.w > -180.1f && angle.w < -179.9f)
  81. return true;
  82. return false;
  83. }
  84. bool test_sin_1()
  85. {
  86. float sinus = glm::sin(0.f);
  87. if(sinus <= epsilon && sinus >= -epsilon)
  88. return true;
  89. return false;
  90. }
  91. bool test_sin_2()
  92. {
  93. glm::vec2 sinus = glm::sin(glm::vec2(0.f, 0.f));
  94. if(sinus.x <= epsilon && sinus.x >= -epsilon &&
  95. sinus.y <= epsilon && sinus.y >= -epsilon)
  96. return true;
  97. return false;
  98. }
  99. bool test_sin_3()
  100. {
  101. glm::vec3 sinus = glm::sin(glm::vec3(0.f, 0.f, 0.f));
  102. if(sinus.x <= epsilon && sinus.x >= -epsilon &&
  103. sinus.y <= epsilon && sinus.y >= -epsilon &&
  104. sinus.z <= epsilon && sinus.z >= -epsilon)
  105. return true;
  106. return false;
  107. }
  108. bool test_sin_4()
  109. {
  110. glm::vec4 sinus = glm::sin(glm::vec4(0.f, 0.f, 0.f, 0.f));
  111. if(sinus.x <= epsilon && sinus.x >= -epsilon &&
  112. sinus.y <= epsilon && sinus.y >= -epsilon &&
  113. sinus.z <= epsilon && sinus.z >= -epsilon &&
  114. sinus.w <= epsilon && sinus.w >= -epsilon)
  115. return true;
  116. return false;
  117. }
  118. bool test_cos_1()
  119. {
  120. float cosinus = glm::cos(0.f);
  121. if(cosinus <= 1.0f + epsilon && cosinus >= 1.0f - epsilon)
  122. return true;
  123. return false;
  124. }
  125. bool test_cos_2()
  126. {
  127. glm::vec2 cosinus = glm::cos(glm::vec2(0.f, 0.f));
  128. if(cosinus.x <= 1.0f + epsilon && cosinus.x >= 1.0f - epsilon &&
  129. cosinus.y <= 1.0f + epsilon && cosinus.y >= 1.0f - epsilon)
  130. return true;
  131. return false;
  132. }
  133. bool test_cos_3()
  134. {
  135. glm::vec3 cosinus = glm::cos(glm::vec3(0.f, 0.f, 0.f));
  136. if(cosinus.x <= 1.0f + epsilon && cosinus.x >= 1.0f - epsilon &&
  137. cosinus.y <= 1.0f + epsilon && cosinus.y >= 1.0f - epsilon &&
  138. cosinus.z <= 1.0f + epsilon && cosinus.z >= 1.0f - epsilon)
  139. return true;
  140. return false;
  141. }
  142. bool test_cos_4()
  143. {
  144. glm::vec4 cosinus = glm::cos(glm::vec4(0.f, 0.f, 0.f, 0.f));
  145. if(cosinus.x <= 1.0f + epsilon && cosinus.x >= 1.0f - epsilon &&
  146. cosinus.y <= 1.0f + epsilon && cosinus.y >= 1.0f - epsilon &&
  147. cosinus.z <= 1.0f + epsilon && cosinus.z >= 1.0f - epsilon &&
  148. cosinus.w <= 1.0f + epsilon && cosinus.w >= 1.0f - epsilon)
  149. return true;
  150. return false;
  151. }
  152. bool test_tan_1()
  153. {
  154. float tangent = glm::tan(0.f);
  155. if(tangent <= epsilon && tangent >= -epsilon)
  156. return true;
  157. return false;
  158. }
  159. bool test_tan_2()
  160. {
  161. glm::vec2 tangent = glm::tan(glm::vec2(0.f, 0.f));
  162. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  163. tangent.y <= epsilon && tangent.y >= -epsilon)
  164. return true;
  165. return false;
  166. }
  167. bool test_tan_3()
  168. {
  169. glm::vec3 tangent = glm::tan(glm::vec3(0.f, 0.f, 0.f));
  170. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  171. tangent.y <= epsilon && tangent.y >= -epsilon &&
  172. tangent.z <= epsilon && tangent.z >= -epsilon)
  173. return true;
  174. return false;
  175. }
  176. bool test_tan_4()
  177. {
  178. glm::vec4 tangent = glm::tan(glm::vec4(0.f, 0.f, 0.f, 0.f));
  179. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  180. tangent.y <= epsilon && tangent.y >= -epsilon &&
  181. tangent.z <= epsilon && tangent.z >= -epsilon &&
  182. tangent.w <= epsilon && tangent.w >= -epsilon)
  183. return true;
  184. return false;
  185. }
  186. bool test_asin_1()
  187. {
  188. float arc_sinus = glm::asin(0.f);
  189. if(arc_sinus <= epsilon && arc_sinus >= -epsilon)
  190. return true;
  191. return false;
  192. }
  193. bool test_asin_2()
  194. {
  195. glm::vec2 arc_sinus = glm::asin(glm::vec2(0.f, 0.f));
  196. if(arc_sinus.x <= epsilon && arc_sinus.x >= -epsilon &&
  197. arc_sinus.y <= epsilon && arc_sinus.y >= -epsilon)
  198. return true;
  199. return false;
  200. }
  201. bool test_asin_3()
  202. {
  203. glm::vec3 arc_sinus = glm::asin(glm::vec3(0.f, 0.f, 0.f));
  204. if(arc_sinus.x <= epsilon && arc_sinus.x >= -epsilon &&
  205. arc_sinus.y <= epsilon && arc_sinus.y >= -epsilon &&
  206. arc_sinus.z <= epsilon && arc_sinus.z >= -epsilon)
  207. return true;
  208. return false;
  209. }
  210. bool test_asin_4()
  211. {
  212. glm::vec4 arc_sinus = glm::sin(glm::vec4(0.f, 0.f, 0.f, 0.f));
  213. if(arc_sinus.x <= epsilon && arc_sinus.x >= -epsilon &&
  214. arc_sinus.y <= epsilon && arc_sinus.y >= -epsilon &&
  215. arc_sinus.z <= epsilon && arc_sinus.z >= -epsilon &&
  216. arc_sinus.w <= epsilon && arc_sinus.w >= -epsilon)
  217. return true;
  218. return false;
  219. }
  220. bool test_acos_1()
  221. {
  222. float arc_cosinus = glm::acos(1.f);
  223. if(arc_cosinus <= epsilon && arc_cosinus >= -epsilon)
  224. return true;
  225. return false;
  226. }
  227. bool test_acos_2()
  228. {
  229. glm::vec2 arc_cosinus = glm::acos(glm::vec2(1.f, 1.f));
  230. if(arc_cosinus.x <= epsilon && arc_cosinus.x >= -epsilon &&
  231. arc_cosinus.y <= epsilon && arc_cosinus.y >= -epsilon)
  232. return true;
  233. return false;
  234. }
  235. bool test_acos_3()
  236. {
  237. glm::vec3 arc_cosinus = glm::acos(glm::vec3(1.f, 1.f, 1.f));
  238. if(arc_cosinus.x <= epsilon && arc_cosinus.x >= -epsilon &&
  239. arc_cosinus.y <= epsilon && arc_cosinus.y >= -epsilon &&
  240. arc_cosinus.z <= epsilon && arc_cosinus.z >= -epsilon)
  241. return true;
  242. return false;
  243. }
  244. bool test_acos_4()
  245. {
  246. glm::vec4 arc_cosinus = glm::acos(glm::vec4(1.f, 1.f, 1.f, 1.f));
  247. if(arc_cosinus.x <= epsilon && arc_cosinus.x >= -epsilon &&
  248. arc_cosinus.y <= epsilon && arc_cosinus.y >= -epsilon &&
  249. arc_cosinus.z <= epsilon && arc_cosinus.z >= -epsilon &&
  250. arc_cosinus.w <= epsilon && arc_cosinus.w >= -epsilon)
  251. return true;
  252. return false;
  253. }
  254. bool test_atan_1()
  255. {
  256. float tangent = glm::atan(0.f);
  257. if(tangent <= epsilon && tangent >= -epsilon)
  258. return true;
  259. return false;
  260. }
  261. bool test_atan_2()
  262. {
  263. glm::vec2 tangent = glm::atan(glm::vec2(0.f, 0.f));
  264. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  265. tangent.y <= epsilon && tangent.y >= -epsilon)
  266. return true;
  267. return false;
  268. }
  269. bool test_atan_3()
  270. {
  271. glm::vec3 tangent = glm::atan(glm::vec3(0.f, 0.f, 0.f));
  272. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  273. tangent.y <= epsilon && tangent.y >= -epsilon &&
  274. tangent.z <= epsilon && tangent.z >= -epsilon)
  275. return true;
  276. return false;
  277. }
  278. bool test_atan_4()
  279. {
  280. glm::vec4 tangent = glm::atan(glm::vec4(0.f, 0.f, 0.f, 0.f));
  281. if(tangent.x <= epsilon && tangent.x >= -epsilon &&
  282. tangent.y <= epsilon && tangent.y >= -epsilon &&
  283. tangent.z <= epsilon && tangent.z >= -epsilon &&
  284. tangent.w <= epsilon && tangent.w >= -epsilon)
  285. return true;
  286. return false;
  287. }
  288. void main_core_func_trigonometric()
  289. {
  290. assert(test_radians_1());
  291. assert(test_radians_2());
  292. assert(test_radians_3());
  293. assert(test_radians_4());
  294. assert(test_degrees_1());
  295. assert(test_degrees_2());
  296. assert(test_degrees_3());
  297. assert(test_degrees_4());
  298. assert(test_sin_1());
  299. assert(test_sin_2());
  300. assert(test_sin_3());
  301. assert(test_sin_4());
  302. assert(test_cos_1());
  303. assert(test_cos_2());
  304. assert(test_cos_3());
  305. assert(test_cos_4());
  306. assert(test_tan_1());
  307. assert(test_tan_2());
  308. assert(test_tan_3());
  309. assert(test_tan_4());
  310. assert(test_asin_1());
  311. assert(test_asin_2());
  312. assert(test_asin_3());
  313. assert(test_asin_4());
  314. assert(test_acos_1());
  315. assert(test_acos_2());
  316. assert(test_acos_3());
  317. assert(test_acos_4());
  318. assert(test_atan_1());
  319. assert(test_atan_2());
  320. assert(test_atan_3());
  321. assert(test_atan_4());
  322. }
  323. }//namespace test
  324. }//namespace glm