gtc_quaternion.cpp 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. #include <glm/gtc/quaternion.hpp>
  2. #include <glm/gtc/epsilon.hpp>
  3. #include <glm/vector_relational.hpp>
  4. #include <vector>
  5. int test_quat_angle()
  6. {
  7. int Error = 0;
  8. {
  9. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  10. glm::quat N = glm::normalize(Q);
  11. float L = glm::length(N);
  12. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  13. float A = glm::angle(N);
  14. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  15. }
  16. {
  17. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
  18. glm::quat N = glm::normalize(Q);
  19. float L = glm::length(N);
  20. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  21. float A = glm::angle(N);
  22. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  23. }
  24. {
  25. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
  26. glm::quat N = glm::normalize(Q);
  27. float L = glm::length(N);
  28. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  29. float A = glm::angle(N);
  30. Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
  31. }
  32. return Error;
  33. }
  34. int test_quat_angleAxis()
  35. {
  36. int Error = 0;
  37. glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
  38. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  39. glm::quat C = glm::mix(A, B, 0.5f);
  40. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  41. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  42. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  43. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  44. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  45. return Error;
  46. }
  47. int test_quat_mix()
  48. {
  49. int Error = 0;
  50. glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
  51. glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  52. glm::quat C = glm::mix(A, B, 0.5f);
  53. glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  54. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  55. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  56. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  57. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  58. return Error;
  59. }
  60. int test_quat_precision()
  61. {
  62. int Error = 0;
  63. Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
  64. Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
  65. return Error;
  66. }
  67. int test_quat_normalize()
  68. {
  69. int Error(0);
  70. {
  71. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
  72. glm::quat N = glm::normalize(Q);
  73. float L = glm::length(N);
  74. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  75. }
  76. {
  77. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
  78. glm::quat N = glm::normalize(Q);
  79. float L = glm::length(N);
  80. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  81. }
  82. {
  83. glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
  84. glm::quat N = glm::normalize(Q);
  85. float L = glm::length(N);
  86. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  87. }
  88. return Error;
  89. }
  90. int test_quat_euler()
  91. {
  92. int Error = 0;
  93. {
  94. glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
  95. float Roll = glm::roll(q);
  96. float Pitch = glm::pitch(q);
  97. float Yaw = glm::yaw(q);
  98. glm::vec3 Angles = glm::eulerAngles(q);
  99. Error += glm::all(glm::epsilonEqual(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1;
  100. }
  101. {
  102. glm::dquat q(1.0, 0.0, 0.0, 1.0);
  103. double Roll = glm::roll(q);
  104. double Pitch = glm::pitch(q);
  105. double Yaw = glm::yaw(q);
  106. glm::dvec3 Angles = glm::eulerAngles(q);
  107. Error += glm::all(glm::epsilonEqual(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1;
  108. }
  109. return Error;
  110. }
  111. int test_quat_slerp()
  112. {
  113. int Error = 0;
  114. float const Epsilon = 0.0001f;//glm::epsilon<float>();
  115. float sqrt2 = std::sqrt(2.0f)/2.0f;
  116. glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
  117. glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
  118. glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
  119. // Testing a == 0
  120. // Must be id
  121. glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
  122. Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
  123. // Testing a == 1
  124. // Must be 90° rotation on Y : 0 0.7 0 0.7
  125. glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
  126. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
  127. // Testing standard, easy case
  128. // Must be 45° rotation on Y : 0 0.38 0 0.92
  129. glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
  130. // Testing reverse case
  131. // Must be 45° rotation on Y : 0 0.38 0 0.92
  132. glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
  133. // Testing against full circle around the sphere instead of shortest path
  134. // Must be 45° rotation on Y
  135. // certainly not a 135° rotation
  136. glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
  137. float Y45angle3 = glm::angle(Y45rot3);
  138. Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  139. Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
  140. // Same, but inverted
  141. // Must also be 45° rotation on Y : 0 0.38 0 0.92
  142. // -0 -0.38 -0 -0.92 is ok too
  143. glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
  144. Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
  145. // Testing q1 = q2
  146. // Must be 90° rotation on Y : 0 0.7 0 0.7
  147. glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
  148. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
  149. // Testing 180° rotation
  150. // Must be 90° rotation on almost any axis that is on the XZ plane
  151. glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
  152. float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
  153. Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
  154. // Testing almost equal quaternions (this test should pass through the linear interpolation)
  155. // Must be 0 0.00X 0 0.99999
  156. glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
  157. // Testing quaternions with opposite sign
  158. {
  159. glm::quat a(-1, 0, 0, 0);
  160. glm::quat result = glm::slerp(a, id, 0.5f);
  161. Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
  162. }
  163. return Error;
  164. }
  165. int test_quat_mul()
  166. {
  167. int Error(0);
  168. glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
  169. glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
  170. glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
  171. glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
  172. glm::quat temp5 = glm::normalize(temp1 * temp2);
  173. glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
  174. glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0));
  175. temp7 *= temp5;
  176. temp7 *= glm::inverse(temp5);
  177. Error += temp7 != glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0));
  178. return Error;
  179. }
  180. int test_quat_two_axis_ctr()
  181. {
  182. int Error(0);
  183. glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
  184. glm::vec3 v1 = q1 * glm::vec3(1, 0, 0);
  185. Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1;
  186. glm::quat q2 = q1 * q1;
  187. glm::vec3 v2 = q2 * glm::vec3(1, 0, 0);
  188. Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
  189. return Error;
  190. }
  191. int test_quat_mul_vec()
  192. {
  193. int Error(0);
  194. glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
  195. glm::vec3 v(1, 0, 0);
  196. glm::vec3 u(q * v);
  197. glm::vec3 w(u * q);
  198. Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1;
  199. return Error;
  200. }
  201. int test_quat_ctr()
  202. {
  203. int Error(0);
  204. # if GLM_HAS_TRIVIAL_QUERIES
  205. // Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1;
  206. // Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1;
  207. // Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1;
  208. // Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1;
  209. Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1;
  210. Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1;
  211. Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1;
  212. Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1;
  213. # endif
  214. # if GLM_HAS_INITIALIZER_LISTS
  215. {
  216. glm::quat A{0, 1, 2, 3};
  217. std::vector<glm::quat> B{
  218. {0, 1, 2, 3},
  219. {0, 1, 2, 3}};
  220. }
  221. # endif//GLM_HAS_INITIALIZER_LISTS
  222. return Error;
  223. }
  224. int test_size()
  225. {
  226. int Error = 0;
  227. Error += 16 == sizeof(glm::quat) ? 0 : 1;
  228. Error += 32 == sizeof(glm::dquat) ? 0 : 1;
  229. Error += glm::quat().length() == 4 ? 0 : 1;
  230. Error += glm::dquat().length() == 4 ? 0 : 1;
  231. Error += glm::quat::length() == 4 ? 0 : 1;
  232. Error += glm::dquat::length() == 4 ? 0 : 1;
  233. return Error;
  234. }
  235. int main()
  236. {
  237. int Error = 0;
  238. Error += test_quat_ctr();
  239. Error += test_quat_mul_vec();
  240. Error += test_quat_two_axis_ctr();
  241. Error += test_quat_mul();
  242. Error += test_quat_precision();
  243. Error += test_quat_angle();
  244. Error += test_quat_angleAxis();
  245. Error += test_quat_mix();
  246. Error += test_quat_normalize();
  247. Error += test_quat_euler();
  248. Error += test_quat_slerp();
  249. Error += test_size();
  250. return Error;
  251. }