gtc_bitfield.cpp 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. #include <glm/gtc/bitfield.hpp>
  2. #include <glm/gtc/type_precision.hpp>
  3. #include <glm/vector_relational.hpp>
  4. #include <glm/integer.hpp>
  5. #include <ctime>
  6. #include <cstdio>
  7. #include <vector>
  8. namespace mask
  9. {
  10. template<typename genType>
  11. struct type
  12. {
  13. genType Value;
  14. genType Return;
  15. };
  16. #if GLM_COMPILER & GLM_COMPILER_CLANG
  17. # pragma clang diagnostic push
  18. # pragma clang diagnostic ignored "-Wsign-conversion"
  19. #endif
  20. #ifdef GLM_TEST_PERF
  21. static inline int mask_zero(int Bits)
  22. {
  23. return ~((~0) << Bits);
  24. }
  25. #endif//GLM_TEST_PERF
  26. #if GLM_COMPILER & GLM_COMPILER_CLANG
  27. # pragma clang diagnostic push
  28. # pragma clang diagnostic ignored "-Wsign-compare"
  29. #endif
  30. static inline int mask_mix(int Bits)
  31. {
  32. return Bits >= static_cast<int>(sizeof(int) * 8) ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1);
  33. }
  34. #if GLM_COMPILER & GLM_COMPILER_CLANG
  35. # pragma clang diagnostic pop
  36. #endif
  37. static inline int mask_half(int Bits)
  38. {
  39. // We do the shift in two steps because 1 << 32 on an int is undefined.
  40. int const Half = Bits >> 1;
  41. int const Fill = ~0;
  42. int const ShiftHaft = (Fill << Half);
  43. int const Rest = Bits - Half;
  44. int const Reversed = ShiftHaft << Rest;
  45. return ~Reversed;
  46. }
  47. static inline int mask_loop(int Bits)
  48. {
  49. int Mask = 0;
  50. for(int Bit = 0; Bit < Bits; ++Bit)
  51. Mask |= (static_cast<int>(1) << Bit);
  52. return Mask;
  53. }
  54. #ifdef GLM_TEST_PERF
  55. static int perf()
  56. {
  57. int const Count = 1000;
  58. std::clock_t Timestamp1 = std::clock();
  59. {
  60. std::vector<int> Mask;
  61. Mask.resize(Count);
  62. for(int i = 0; i < Count; ++i)
  63. Mask[i] = mask_mix(i % 32);
  64. }
  65. std::clock_t Timestamp2 = std::clock();
  66. {
  67. std::vector<int> Mask;
  68. Mask.resize(Count);
  69. for(int i = 0; i < Count; ++i)
  70. Mask[i] = mask_loop(i % 32);
  71. }
  72. std::clock_t Timestamp3 = std::clock();
  73. {
  74. std::vector<int> Mask;
  75. Mask.resize(Count);
  76. for(int i = 0; i < Count; ++i)
  77. Mask[i] = glm::mask(i % 32);
  78. }
  79. std::clock_t Timestamp4 = std::clock();
  80. {
  81. std::vector<int> Mask;
  82. Mask.resize(Count);
  83. for(int i = 0; i < Count; ++i)
  84. Mask[i] = mask_zero(i % 32);
  85. }
  86. std::clock_t Timestamp5 = std::clock();
  87. {
  88. std::vector<int> Mask;
  89. Mask.resize(Count);
  90. for(int i = 0; i < Count; ++i)
  91. Mask[i] = mask_half(i % 32);
  92. }
  93. std::clock_t Timestamp6 = std::clock();
  94. std::clock_t TimeMix = Timestamp2 - Timestamp1;
  95. std::clock_t TimeLoop = Timestamp3 - Timestamp2;
  96. std::clock_t TimeDefault = Timestamp4 - Timestamp3;
  97. std::clock_t TimeZero = Timestamp5 - Timestamp4;
  98. std::clock_t TimeHalf = Timestamp6 - Timestamp5;
  99. std::printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix));
  100. std::printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop));
  101. std::printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault));
  102. std::printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero));
  103. std::printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf));
  104. return TimeDefault <= TimeLoop ? 0 : 1;
  105. }
  106. #endif//GLM_TEST_PERF
  107. #if GLM_COMPILER & GLM_COMPILER_CLANG
  108. # pragma clang diagnostic pop
  109. #endif
  110. static int test_int()
  111. {
  112. type<int> const Data[] =
  113. {
  114. { 0, 0x00000000},
  115. { 1, 0x00000001},
  116. { 2, 0x00000003},
  117. { 3, 0x00000007},
  118. {31, 0x7fffffff}
  119. };
  120. int Error = 0;
  121. /* mask_zero is sadly not a correct code
  122. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  123. {
  124. int Result = mask_zero(Data[i].Value);
  125. Error += Data[i].Return == Result ? 0 : 1;
  126. }
  127. */
  128. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  129. {
  130. int Result = mask_mix(Data[i].Value);
  131. Error += Data[i].Return == Result ? 0 : 1;
  132. }
  133. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  134. {
  135. int Result = mask_half(Data[i].Value);
  136. Error += Data[i].Return == Result ? 0 : 1;
  137. }
  138. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  139. {
  140. int Result = mask_loop(Data[i].Value);
  141. Error += Data[i].Return == Result ? 0 : 1;
  142. }
  143. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  144. {
  145. int Result = glm::mask(Data[i].Value);
  146. Error += Data[i].Return == Result ? 0 : 1;
  147. }
  148. return Error;
  149. }
  150. static int test_ivec4()
  151. {
  152. type<glm::ivec4> const Data[] =
  153. {
  154. {glm::ivec4( 0), glm::ivec4(0x00000000)},
  155. {glm::ivec4( 1), glm::ivec4(0x00000001)},
  156. {glm::ivec4( 2), glm::ivec4(0x00000003)},
  157. {glm::ivec4( 3), glm::ivec4(0x00000007)}
  158. };
  159. int Error(0);
  160. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i)
  161. {
  162. glm::ivec4 Result = glm::mask(Data[i].Value);
  163. Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1;
  164. }
  165. return Error;
  166. }
  167. static int test()
  168. {
  169. int Error(0);
  170. Error += test_int();
  171. Error += test_ivec4();
  172. return Error;
  173. }
  174. }//namespace mask
  175. #ifdef GLM_TEST_PERF
  176. namespace bitfieldInterleave3
  177. {
  178. template<typename PARAM, typename RET>
  179. static inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z)
  180. {
  181. RET Result = 0;
  182. for(RET i = 0; i < sizeof(PARAM) * 8; ++i)
  183. {
  184. Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0));
  185. Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1));
  186. Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2));
  187. }
  188. return Result;
  189. }
  190. static int test()
  191. {
  192. int Error(0);
  193. std::clock_t const LastTime = std::clock();
  194. glm::uint16 const test_max = 5; // previously 11
  195. glm::uint16 x_max = 1 << test_max;
  196. glm::uint16 y_max = 1 << test_max;
  197. glm::uint16 z_max = 1 << test_max;
  198. for(glm::uint16 z = 0; z < z_max; z += 27)
  199. for(glm::uint16 y = 0; y < y_max; y += 27)
  200. for(glm::uint16 x = 0; x < x_max; x += 27)
  201. {
  202. glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z);
  203. glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z);
  204. Error += ResultA == ResultB ? 0 : 1;
  205. }
  206. std::clock_t const Time = std::clock() - LastTime;
  207. std::printf("glm::bitfieldInterleave3 Test %d clocks\n", static_cast<int>(Time));
  208. return Error;
  209. }
  210. }
  211. namespace bitfieldInterleave4
  212. {
  213. template<typename PARAM, typename RET>
  214. static inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
  215. {
  216. RET const v[4] = {x, y, z, w};
  217. RET Result = 0;
  218. for(RET i = 0; i < sizeof(PARAM) * 8; i++)
  219. {
  220. Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0));
  221. Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1));
  222. Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2));
  223. Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3));
  224. }
  225. return Result;
  226. }
  227. static int test()
  228. {
  229. int Error(0);
  230. std::clock_t const LastTime = std::clock();
  231. glm::uint16 const test_max = 5; // previously 11
  232. glm::uint16 x_max = 1 << test_max;
  233. glm::uint16 y_max = 1 << test_max;
  234. glm::uint16 z_max = 1 << test_max;
  235. glm::uint16 w_max = 1 << test_max;
  236. for(glm::uint16 w = 0; w < w_max; w += 27)
  237. for(glm::uint16 z = 0; z < z_max; z += 27)
  238. for(glm::uint16 y = 0; y < y_max; y += 27)
  239. for(glm::uint16 x = 0; x < x_max; x += 27)
  240. {
  241. glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w);
  242. glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w);
  243. Error += ResultA == ResultB ? 0 : 1;
  244. }
  245. std::clock_t const Time = std::clock() - LastTime;
  246. std::printf("glm::bitfieldInterleave4 Test %d clocks\n", static_cast<int>(Time));
  247. return Error;
  248. }
  249. }
  250. #endif//GLM_TEST_PERF
  251. namespace bitfieldInterleave
  252. {
  253. #ifdef GLM_TEST_PERF
  254. static inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  255. {
  256. glm::uint64 REG1;
  257. glm::uint64 REG2;
  258. REG1 = x;
  259. REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  260. REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  261. REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  262. REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  263. REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  264. REG2 = y;
  265. REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  266. REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  267. REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  268. REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  269. REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  270. return REG1 | (REG2 << 1);
  271. }
  272. static inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  273. {
  274. glm::uint64 REG1;
  275. glm::uint64 REG2;
  276. REG1 = x;
  277. REG2 = y;
  278. REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  279. REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  280. REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  281. REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  282. REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  283. REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  284. REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  285. REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  286. REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  287. REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  288. return REG1 | (REG2 << 1);
  289. }
  290. /*
  291. static inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  292. {
  293. static glm::uint64 const Mask[5] =
  294. {
  295. 0x5555555555555555,
  296. 0x3333333333333333,
  297. 0x0F0F0F0F0F0F0F0F,
  298. 0x00FF00FF00FF00FF,
  299. 0x0000FFFF0000FFFF
  300. };
  301. glm::uint64 REG1 = x;
  302. glm::uint64 REG2 = y;
  303. for(int i = 4; i >= 0; --i)
  304. {
  305. REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
  306. REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
  307. }
  308. return REG1 | (REG2 << 1);
  309. }
  310. */
  311. #if GLM_ARCH & GLM_ARCH_SSE2_BIT
  312. static inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  313. {
  314. __m128i const Array = _mm_set_epi32(0, static_cast<int>(y), 0, static_cast<int>(x));
  315. __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
  316. __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
  317. __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
  318. __m128i const Mask1 = _mm_set1_epi32(0x33333333);
  319. __m128i const Mask0 = _mm_set1_epi32(0x55555555);
  320. __m128i Reg1;
  321. __m128i Reg2;
  322. // REG1 = x;
  323. // REG2 = y;
  324. Reg1 = _mm_load_si128(&Array);
  325. //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  326. //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  327. Reg2 = _mm_slli_si128(Reg1, 2);
  328. Reg1 = _mm_or_si128(Reg2, Reg1);
  329. Reg1 = _mm_and_si128(Reg1, Mask4);
  330. //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  331. //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  332. Reg2 = _mm_slli_si128(Reg1, 1);
  333. Reg1 = _mm_or_si128(Reg2, Reg1);
  334. Reg1 = _mm_and_si128(Reg1, Mask3);
  335. //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  336. //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  337. Reg2 = _mm_slli_epi32(Reg1, 4);
  338. Reg1 = _mm_or_si128(Reg2, Reg1);
  339. Reg1 = _mm_and_si128(Reg1, Mask2);
  340. //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  341. //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  342. Reg2 = _mm_slli_epi32(Reg1, 2);
  343. Reg1 = _mm_or_si128(Reg2, Reg1);
  344. Reg1 = _mm_and_si128(Reg1, Mask1);
  345. //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  346. //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  347. Reg2 = _mm_slli_epi32(Reg1, 1);
  348. Reg1 = _mm_or_si128(Reg2, Reg1);
  349. Reg1 = _mm_and_si128(Reg1, Mask0);
  350. //return REG1 | (REG2 << 1);
  351. Reg2 = _mm_slli_epi32(Reg1, 1);
  352. Reg2 = _mm_srli_si128(Reg2, 8);
  353. Reg1 = _mm_or_si128(Reg1, Reg2);
  354. __m128i Result;
  355. _mm_store_si128(&Result, Reg1);
  356. #if GLM_COMPILER & GLM_COMPILER_CLANG
  357. # pragma clang diagnostic push
  358. # pragma clang diagnostic ignored "-Wundefined-reinterpret-cast"
  359. #endif
  360. return *reinterpret_cast<glm::uint64*>(&Result);
  361. #if GLM_COMPILER & GLM_COMPILER_CLANG
  362. # pragma clang diagnostic pop
  363. #endif
  364. }
  365. static inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  366. {
  367. __m128i const Array = _mm_set_epi32(0, static_cast<int>(y), 0, static_cast<int>(x));
  368. __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
  369. __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
  370. __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
  371. __m128i const Mask1 = _mm_set1_epi32(0x33333333);
  372. __m128i const Mask0 = _mm_set1_epi32(0x55555555);
  373. __m128i Reg1;
  374. __m128i Reg2;
  375. // REG1 = x;
  376. // REG2 = y;
  377. Reg1 = _mm_loadu_si128(&Array);
  378. //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  379. //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  380. Reg2 = _mm_slli_si128(Reg1, 2);
  381. Reg1 = _mm_or_si128(Reg2, Reg1);
  382. Reg1 = _mm_and_si128(Reg1, Mask4);
  383. //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  384. //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  385. Reg2 = _mm_slli_si128(Reg1, 1);
  386. Reg1 = _mm_or_si128(Reg2, Reg1);
  387. Reg1 = _mm_and_si128(Reg1, Mask3);
  388. //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  389. //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  390. Reg2 = _mm_slli_epi32(Reg1, 4);
  391. Reg1 = _mm_or_si128(Reg2, Reg1);
  392. Reg1 = _mm_and_si128(Reg1, Mask2);
  393. //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  394. //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  395. Reg2 = _mm_slli_epi32(Reg1, 2);
  396. Reg1 = _mm_or_si128(Reg2, Reg1);
  397. Reg1 = _mm_and_si128(Reg1, Mask1);
  398. //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  399. //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  400. Reg2 = _mm_slli_epi32(Reg1, 1);
  401. Reg1 = _mm_or_si128(Reg2, Reg1);
  402. Reg1 = _mm_and_si128(Reg1, Mask0);
  403. //return REG1 | (REG2 << 1);
  404. Reg2 = _mm_slli_epi32(Reg1, 1);
  405. Reg2 = _mm_srli_si128(Reg2, 8);
  406. Reg1 = _mm_or_si128(Reg1, Reg2);
  407. __m128i Result;
  408. _mm_store_si128(&Result, Reg1);
  409. #if GLM_COMPILER & GLM_COMPILER_CLANG
  410. # pragma clang diagnostic push
  411. # pragma clang diagnostic ignored "-Wundefined-reinterpret-cast"
  412. #endif
  413. return *reinterpret_cast<glm::uint64*>(&Result);
  414. #if GLM_COMPILER & GLM_COMPILER_CLANG
  415. # pragma clang diagnostic pop
  416. #endif
  417. }
  418. #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  419. #endif//GLM_TEST_PERF
  420. static int test()
  421. {
  422. int Error = 0;
  423. std::clock_t const LastTime = std::clock();
  424. glm::uint8 const test_loop = 15; // 127 ideally
  425. /*
  426. {
  427. for(glm::uint32 y = 0; y < (1 << 10); ++y)
  428. for(glm::uint32 x = 0; x < (1 << 10); ++x)
  429. {
  430. glm::uint64 A = glm::bitfieldInterleave(x, y);
  431. glm::uint64 B = fastBitfieldInterleave(x, y);
  432. //glm::uint64 C = loopBitfieldInterleave(x, y);
  433. glm::uint64 D = interleaveBitfieldInterleave(x, y);
  434. assert(A == B);
  435. //assert(A == C);
  436. assert(A == D);
  437. # if GLM_ARCH & GLM_ARCH_SSE2_BIT
  438. glm::uint64 E = sseBitfieldInterleave(x, y);
  439. glm::uint64 F = sseUnalignedBitfieldInterleave(x, y);
  440. assert(A == E);
  441. assert(A == F);
  442. __m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x));
  443. glm::uint64 Result[2];
  444. _mm_storeu_si128((__m128i*)Result, G);
  445. assert(A == Result[0]);
  446. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  447. }
  448. }
  449. */
  450. {
  451. for(glm::uint8 y = 0; y < test_loop; ++y)
  452. for(glm::uint8 x = 0; x < test_loop; ++x)
  453. {
  454. glm::uint64 A(glm::bitfieldInterleave(glm::u8vec2(x, y)));
  455. glm::uint64 B(glm::bitfieldInterleave(glm::u16vec2(x, y)));
  456. glm::uint64 C(glm::bitfieldInterleave(glm::u32vec2(x, y)));
  457. Error += A == B ? 0 : 1;
  458. Error += A == C ? 0 : 1;
  459. glm::u32vec2 const& D = glm::bitfieldDeinterleave(C);
  460. Error += D.x == x ? 0 : 1;
  461. Error += D.y == y ? 0 : 1;
  462. }
  463. }
  464. {
  465. for(glm::uint8 y = 0; y < test_loop; ++y)
  466. for(glm::uint8 x = 0; x < test_loop; ++x)
  467. {
  468. glm::int64 A(glm::bitfieldInterleave(glm::int8(x), glm::int8(y)));
  469. glm::int64 B(glm::bitfieldInterleave(glm::int16(x), glm::int16(y)));
  470. glm::int64 C(glm::bitfieldInterleave(glm::int32(x), glm::int32(y)));
  471. Error += A == B ? 0 : 1;
  472. Error += A == C ? 0 : 1;
  473. }
  474. }
  475. std::clock_t const Time = std::clock() - LastTime;
  476. std::printf("glm::bitfieldInterleave Test %d clocks\n", static_cast<int>(Time));
  477. return Error;
  478. }
  479. #ifdef GLM_TEST_PERF
  480. static int perf()
  481. {
  482. glm::uint32 x_max = 1 << 4;
  483. glm::uint32 y_max = 1 << 3;
  484. // ALU
  485. std::vector<glm::uint64> Data(x_max * y_max);
  486. std::vector<glm::u32vec2> Param(x_max * y_max);
  487. for(glm::uint32 i = 0; i < Param.size(); ++i) {
  488. Param[i] = glm::u32vec2(i % x_max, i / y_max);
  489. }
  490. {
  491. std::clock_t LastTime = std::clock();
  492. for(std::size_t i = 0; i < Data.size(); ++i)
  493. Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y);
  494. std::clock_t Time = std::clock() - LastTime;
  495. std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  496. }
  497. {
  498. std::clock_t LastTime = std::clock();
  499. for(std::size_t i = 0; i < Data.size(); ++i)
  500. Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y);
  501. std::clock_t Time = std::clock() - LastTime;
  502. std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  503. }
  504. /*
  505. {
  506. std::clock_t LastTime = std::clock();
  507. for(std::size_t i = 0; i < Data.size(); ++i)
  508. Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y);
  509. std::clock_t Time = std::clock() - LastTime;
  510. std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  511. }
  512. */
  513. {
  514. std::clock_t LastTime = std::clock();
  515. for(std::size_t i = 0; i < Data.size(); ++i)
  516. Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y);
  517. std::clock_t Time = std::clock() - LastTime;
  518. std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  519. }
  520. # if GLM_ARCH & GLM_ARCH_SSE2_BIT
  521. {
  522. std::clock_t LastTime = std::clock();
  523. for(std::size_t i = 0; i < Data.size(); ++i)
  524. Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y);
  525. std::clock_t Time = std::clock() - LastTime;
  526. std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  527. }
  528. {
  529. std::clock_t LastTime = std::clock();
  530. for(std::size_t i = 0; i < Data.size(); ++i)
  531. Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y);
  532. std::clock_t Time = std::clock() - LastTime;
  533. std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  534. }
  535. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  536. {
  537. std::clock_t LastTime = std::clock();
  538. for(std::size_t i = 0; i < Data.size(); ++i)
  539. Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x);
  540. std::clock_t Time = std::clock() - LastTime;
  541. std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<int>(Time));
  542. }
  543. # if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC))
  544. {
  545. // SIMD
  546. std::vector<__m128i> SimdData;
  547. SimdData.resize(static_cast<std::size_t>(x_max * y_max));
  548. std::vector<__m128i> SimdParam;
  549. SimdParam.resize(static_cast<std::size_t>(x_max * y_max));
  550. for(std::size_t i = 0; i < SimdParam.size(); ++i)
  551. SimdParam[i] = _mm_set_epi32(static_cast<int>(i % static_cast<std::size_t>(x_max)), 0, static_cast<int>(i / static_cast<std::size_t>(y_max)), 0);
  552. std::clock_t LastTime = std::clock();
  553. for(std::size_t i = 0; i < SimdData.size(); ++i)
  554. SimdData[i] = glm_i128_interleave(SimdParam[i]);
  555. std::clock_t Time = std::clock() - LastTime;
  556. std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<int>(Time));
  557. }
  558. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  559. return 0;
  560. }
  561. #endif//GLM_TEST_PERF
  562. }//namespace bitfieldInterleave
  563. #ifdef GLM_TEST_PERF
  564. namespace bitfieldInterleave5
  565. {
  566. GLM_FUNC_QUALIFIER
  567. static glm::uint16 bitfieldInterleave_u8vec2(glm::uint8 x, glm::uint8 y)
  568. {
  569. glm::uint32 Result = (glm::uint32(y) << 16) | glm::uint32(x);
  570. Result = ((Result << 4) | Result) & 0x0F0F0F0F;
  571. Result = ((Result << 2) | Result) & 0x33333333;
  572. Result = ((Result << 1) | Result) & 0x55555555;
  573. return static_cast<glm::uint16>((Result & 0x0000FFFF) | (Result >> 15));
  574. }
  575. GLM_FUNC_QUALIFIER
  576. static glm::u8vec2 bitfieldDeinterleave_u8vec2(glm::uint16 InterleavedBitfield)
  577. {
  578. glm::uint32 Result(InterleavedBitfield);
  579. Result = ((Result << 15) | Result) & 0x55555555;
  580. Result = ((Result >> 1) | Result) & 0x33333333;
  581. Result = ((Result >> 2) | Result) & 0x0F0F0F0F;
  582. Result = ((Result >> 4) | Result) & 0x00FF00FF;
  583. return glm::u8vec2(Result & 0x0000FFFF, Result >> 16);
  584. }
  585. /*
  586. GLM_FUNC_QUALIFIER
  587. static glm::uint32 bitfieldInterleave_u8vec4(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
  588. {
  589. glm::uint64 Result = (glm::uint64(w) << 48) | (glm::uint64(z) << 32) | (glm::uint64(y) << 16) | glm::uint64(x);
  590. Result = ((Result << 12) | Result) & 0x000F000F000F000Full;
  591. Result = ((Result << 6) | Result) & 0x0303030303030303ull;
  592. Result = ((Result << 3) | Result) & 0x1111111111111111ull;
  593. const glm::uint32 a = static_cast<glm::uint32>((Result & 0x000000000000FFFF) >> ( 0 - 0));
  594. const glm::uint32 b = static_cast<glm::uint32>((Result & 0x00000000FFFF0000) >> (16 - 3));
  595. const glm::uint32 c = static_cast<glm::uint32>((Result & 0x0000FFFF00000000) >> (32 - 6));
  596. const glm::uint32 d = static_cast<glm::uint32>((Result & 0xFFFF000000000000) >> (48 - 12));
  597. return a | b | c | d;
  598. }
  599. GLM_FUNC_QUALIFIER
  600. static glm::u8vec4 bitfieldDeinterleave_u8vec4(glm::uint32 InterleavedBitfield)
  601. {
  602. glm::uint64 Result(InterleavedBitfield);
  603. Result = ((Result << 15) | Result) & 0x9249249249249249ull;
  604. Result = ((Result >> 1) | Result) & 0x30C30C30C30C30C3ull;
  605. Result = ((Result >> 2) | Result) & 0xF00F00F00F00F00Full;
  606. Result = ((Result >> 4) | Result) & 0x00FF0000FF0000FFull;
  607. return glm::u8vec4(
  608. (Result >> 0) & 0x000000000000FFFFull,
  609. (Result >> 16) & 0x00000000FFFF0000ull,
  610. (Result >> 32) & 0x0000FFFF00000000ull,
  611. (Result >> 48) & 0xFFFF000000000000ull);
  612. }
  613. */
  614. #if GLM_COMPILER & GLM_COMPILER_VC
  615. # pragma warning(disable : 4309)
  616. #endif
  617. /*
  618. GLM_FUNC_QUALIFIER
  619. static glm::uint32 bitfieldInterleave_u16vec2(glm::uint16 x, glm::uint16 y)
  620. {
  621. glm::uint64 Result = (glm::uint64(y) << 32) | glm::uint64(x);
  622. Result = ((Result << 8) | Result) & static_cast<glm::uint32>(0x00FF00FF00FF00FFull);
  623. Result = ((Result << 4) | Result) & static_cast<glm::uint32>(0x0F0F0F0F0F0F0F0Full);
  624. Result = ((Result << 2) | Result) & static_cast<glm::uint32>(0x3333333333333333ull);
  625. Result = ((Result << 1) | Result) & static_cast<glm::uint32>(0x5555555555555555ull);
  626. return static_cast<glm::uint32>((Result & 0x00000000FFFFFFFFull) | (Result >> 31));
  627. }
  628. GLM_FUNC_QUALIFIER
  629. static glm::u16vec2 bitfieldDeinterleave_u16vec2(glm::uint32 InterleavedBitfield)
  630. {
  631. glm::uint64 Result(InterleavedBitfield);
  632. Result = ((Result << 31) | Result) & 0x5555555555555555ull;
  633. Result = ((Result >> 1) | Result) & 0x3333333333333333ull;
  634. Result = ((Result >> 2) | Result) & 0x0F0F0F0F0F0F0F0Full;
  635. Result = ((Result >> 4) | Result) & 0x00FF00FF00FF00FFull;
  636. Result = ((Result >> 8) | Result) & 0x0000FFFF0000FFFFull;
  637. return glm::u16vec2(Result & 0x00000000FFFFFFFFull, Result >> 32);
  638. }
  639. */
  640. static int test(glm::size_t divider)
  641. {
  642. int Error = 0;
  643. std::clock_t const LastTime = std::clock();
  644. glm::size_t count = 256 / divider;
  645. for(glm::size_t j = 0; j < count; ++j)
  646. for(glm::size_t i = 0; i < count; ++i)
  647. {
  648. glm::uint16 A = bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j));
  649. glm::uint16 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j));
  650. Error += A == B ? 0 : 1;
  651. glm::u8vec2 C = bitfieldDeinterleave_u8vec2(A);
  652. Error += C.x == glm::uint8(i) ? 0 : 1;
  653. Error += C.y == glm::uint8(j) ? 0 : 1;
  654. }
  655. /*
  656. for(glm::size_t j = 0; j < count; ++j)
  657. for(glm::size_t i = 0; i < count; ++i)
  658. {
  659. glm::uint32 A = bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
  660. glm::uint32 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
  661. Error += A == B ? 0 : 1;
  662. glm::u8vec4 C = bitfieldDeinterleave_u8vec4(A);
  663. Error += C.x == glm::uint8(i) ? 0 : 1;
  664. Error += C.y == glm::uint8(j) ? 0 : 1;
  665. Error += C.z == glm::uint8(i) ? 0 : 1;
  666. Error += C.w == glm::uint8(j) ? 0 : 1;
  667. }
  668. */
  669. /*
  670. for(glm::size_t j = 0; j < count; ++j)
  671. for(glm::size_t i = 0; i < count; ++i)
  672. {
  673. glm::uint32 A = bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j));
  674. glm::uint32 B = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j));
  675. Error += A == B ? 0 : 1;
  676. }
  677. */
  678. std::clock_t const Time = std::clock() - LastTime;
  679. std::printf("glm::bitfieldInterleave4 Test %d clocks\n", static_cast<int>(Time));
  680. return Error;
  681. }
  682. static int perf_old_u8vec2(std::vector<glm::uint16>& Result, glm::size_t divider)
  683. {
  684. int Error = 0;
  685. glm::size_t count = 256 / divider;
  686. const std::clock_t BeginTime = std::clock();
  687. for(glm::size_t k = 0; k < 100; ++k)
  688. for(glm::size_t j = 0; j < count; ++j)
  689. for(glm::size_t i = 0; i < count; ++i)
  690. Error += Result[j * count + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)) ? 0 : 1;
  691. const std::clock_t EndTime = std::clock();
  692. std::printf("glm::bitfieldInterleave<u8vec2> Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  693. return Error;
  694. }
  695. static int perf_new_u8vec2(std::vector<glm::uint16>& Result, glm::size_t divider)
  696. {
  697. int Error = 0;
  698. glm::size_t count = 256 / divider;
  699. const std::clock_t BeginTime = std::clock();
  700. for(glm::size_t k = 0; k < 100; ++k)
  701. for(glm::size_t j = 0; j < count; ++j)
  702. for(glm::size_t i = 0; i < count; ++i)
  703. Error += Result[j * count + i] == bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)) ? 0 : 1;
  704. const std::clock_t EndTime = std::clock();
  705. std::printf("bitfieldInterleave_u8vec2 Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  706. return Error;
  707. }
  708. static int perf_old_u8vec4(std::vector<glm::uint32>& Result, glm::size_t divider)
  709. {
  710. int Error = 0;
  711. glm::size_t count = 256 / divider;
  712. const std::clock_t BeginTime = std::clock();
  713. for(glm::size_t k = 0; k < 100; ++k)
  714. for(glm::size_t j = 0; j < count; ++j)
  715. for(glm::size_t i = 0; i < count; ++i)
  716. Error += Result[j * count + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1;
  717. const std::clock_t EndTime = std::clock();
  718. std::printf("glm::bitfieldInterleave<u8vec4> Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  719. return Error;
  720. }
  721. /*
  722. static int perf_new_u8vec4(std::vector<glm::uint32>& Result, glm::size_t divider)
  723. {
  724. int Error = 0;
  725. glm::size_t count = 256 / divider;
  726. const std::clock_t BeginTime = std::clock();
  727. for(glm::size_t k = 0; k < 10000; ++k)
  728. for(glm::size_t j = 0; j < count; ++j)
  729. for(glm::size_t i = 0; i < count; ++i)
  730. Error += Result[j * count + i] == bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1;
  731. const std::clock_t EndTime = std::clock();
  732. std::printf("bitfieldInterleave_u8vec4 Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  733. return Error;
  734. }
  735. */
  736. static int perf_old_u16vec2(std::vector<glm::uint32>& Result, glm::size_t divider)
  737. {
  738. int Error = 0;
  739. glm::size_t count = 256 / divider;
  740. const std::clock_t BeginTime = std::clock();
  741. for(glm::size_t k = 0; k < 100; ++k)
  742. for(glm::size_t j = 0; j < count; ++j)
  743. for(glm::size_t i = 0; i < count; ++i)
  744. Error += Result[j * count + i] == glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)) ? 0 : 1;
  745. const std::clock_t EndTime = std::clock();
  746. std::printf("glm::bitfieldInterleave<u16vec2> Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  747. return Error;
  748. }
  749. /*
  750. static int perf_new_u16vec2(std::vector<glm::uint32>& Result, glm::size_t divider)
  751. {
  752. int Error = 0;
  753. glm::size_t count = 256 / divider;
  754. const std::clock_t BeginTime = std::clock();
  755. for(glm::size_t k = 0; k < 10000; ++k)
  756. for(glm::size_t j = 0; j < count; ++j)
  757. for(glm::size_t i = 0; i < count; ++i)
  758. Error += Result[j * count + i] == bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)) ? 0 : 1;
  759. const std::clock_t EndTime = std::clock();
  760. std::printf("bitfieldInterleave_u16vec2 Time %d clocks\n", static_cast<int>(EndTime - BeginTime));
  761. return Error;
  762. }
  763. */
  764. static int perf(glm::size_t divider)
  765. {
  766. int Error = 0;
  767. glm::size_t count = 256 / divider;
  768. std::printf("bitfieldInterleave perf: init\r");
  769. std::vector<glm::uint16> Result_u8vec2(count * count, 0);
  770. for(glm::size_t j = 0; j < count; ++j)
  771. for(glm::size_t i = 0; i < count; ++i)
  772. Result_u8vec2[j * count + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j));
  773. Error += perf_old_u8vec2(Result_u8vec2, divider);
  774. Error += perf_new_u8vec2(Result_u8vec2, divider);
  775. std::vector<glm::uint32> Result_u8vec4(count * count, 0);
  776. for(glm::size_t j = 0; j < count; ++j)
  777. for(glm::size_t i = 0; i < count; ++i)
  778. Result_u8vec4[j * count + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
  779. Error += perf_old_u8vec4(Result_u8vec4, divider);
  780. //Error += perf_new_u8vec4(Result_u8vec4, divider);
  781. std::vector<glm::uint32> Result_u16vec2(count * count, 0);
  782. for(glm::size_t j = 0; j < count; ++j)
  783. for(glm::size_t i = 0; i < count; ++i)
  784. Result_u16vec2[j * count + i] = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j));
  785. Error += perf_old_u16vec2(Result_u16vec2, divider);
  786. //Error += perf_new_u16vec2(Result_u16vec2, divider);
  787. std::printf("bitfieldInterleave perf: %d Errors\n", Error);
  788. return Error;
  789. }
  790. }//namespace bitfieldInterleave5
  791. #endif//GLM_TEST_PERF
  792. static int test_bitfieldRotateRight()
  793. {
  794. std::clock_t const LastTime = std::clock();
  795. glm::ivec4 const A = glm::bitfieldRotateRight(glm::ivec4(2), 1);
  796. glm::ivec4 const B = glm::ivec4(2) >> 1;
  797. std::clock_t const Time = std::clock() - LastTime;
  798. std::printf("glm::bitfieldRotateRight Test %d clocks\n", static_cast<int>(Time));
  799. return A == B;
  800. }
  801. static int test_bitfieldRotateLeft()
  802. {
  803. std::clock_t const LastTime = std::clock();
  804. glm::ivec4 const A = glm::bitfieldRotateLeft(glm::ivec4(2), 1);
  805. glm::ivec4 const B = glm::ivec4(2) << 1;
  806. std::clock_t const Time = std::clock() - LastTime;
  807. std::printf("glm::bitfieldRotateLeft Test %d clocks\n", static_cast<int>(Time));
  808. return A == B;
  809. }
  810. int main()
  811. {
  812. int Error = 0;
  813. Error += ::bitfieldInterleave::test();
  814. #ifdef GLM_TEST_PERF
  815. Error += ::bitfieldInterleave3::test();
  816. Error += ::bitfieldInterleave4::test();
  817. // Tests for a faster and to reserve bitfieldInterleave
  818. Error += ::bitfieldInterleave5::test(64);
  819. Error += ::bitfieldInterleave5::perf(64);
  820. Error += ::bitfieldInterleave::perf();
  821. #endif//GLM_TEST_PERF
  822. Error += ::mask::test();
  823. #ifdef GLM_TEST_PERF
  824. Error += ::mask::perf();
  825. #endif//GLM_TEST_PERF
  826. Error += test_bitfieldRotateRight();
  827. Error += test_bitfieldRotateLeft();
  828. return Error;
  829. }