/* * This source file is part of libRocket, the HTML/CSS Interface Middleware * * For the latest information, see http://www.librocket.com * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "precompiled.h" #include "LayoutEngine.h" #include #include "Pool.h" #include "LayoutBlockBoxSpace.h" #include "LayoutInlineBoxText.h" #include #include #include #include #include #include #include namespace Rocket { namespace Core { #define MAX(a, b) (a > b ? a : b) struct LayoutChunk { LayoutChunk() { } static const unsigned int size = MAX(sizeof(LayoutBlockBox), MAX(sizeof(LayoutInlineBox), MAX(sizeof(LayoutInlineBoxText), MAX(sizeof(LayoutLineBox), sizeof(LayoutBlockBoxSpace))))); char buffer[size]; }; static Pool< LayoutChunk > layout_chunk_pool(200, true); LayoutEngine::LayoutEngine() { block_box = NULL; block_context_box = NULL; } LayoutEngine::~LayoutEngine() { } // Formats the contents for a root-level element (usually a document or floating element). bool LayoutEngine::FormatElement(Element* element, const Vector2f& containing_block) { block_box = new LayoutBlockBox(this, NULL, NULL); block_box->GetBox().SetContent(containing_block); block_context_box = block_box->AddBlockElement(element); for (int i = 0; i < element->GetNumChildren(); i++) { if (!FormatElement(element->GetChild(i))) i = -1; } block_context_box->Close(); block_context_box->CloseAbsoluteElements(); element->OnLayout(); delete block_box; return true; } // Generates the box for an element. void LayoutEngine::BuildBox(Box& box, const Vector2f& containing_block, Element* element, bool inline_element) { if (element == NULL) { box.SetContent(containing_block); return; } // Calculate the padding area. float padding = element->ResolveProperty(PADDING_TOP, containing_block.x); box.SetEdge(Box::PADDING, Box::TOP, Math::Max(0.0f, padding)); padding = element->ResolveProperty(PADDING_RIGHT, containing_block.x); box.SetEdge(Box::PADDING, Box::RIGHT, Math::Max(0.0f, padding)); padding = element->ResolveProperty(PADDING_BOTTOM, containing_block.x); box.SetEdge(Box::PADDING, Box::BOTTOM, Math::Max(0.0f, padding)); padding = element->ResolveProperty(PADDING_LEFT, containing_block.x); box.SetEdge(Box::PADDING, Box::LEFT, Math::Max(0.0f, padding)); // Calculate the border area. float border = element->ResolveProperty(BORDER_TOP_WIDTH, containing_block.x); box.SetEdge(Box::BORDER, Box::TOP, Math::Max(0.0f, border)); border = element->ResolveProperty(BORDER_RIGHT_WIDTH, containing_block.x); box.SetEdge(Box::BORDER, Box::RIGHT, Math::Max(0.0f, border)); border = element->ResolveProperty(BORDER_BOTTOM_WIDTH, containing_block.x); box.SetEdge(Box::BORDER, Box::BOTTOM, Math::Max(0.0f, border)); border = element->ResolveProperty(BORDER_LEFT_WIDTH, containing_block.x); box.SetEdge(Box::BORDER, Box::LEFT, Math::Max(0.0f, border)); // Calculate the size of the content area. Vector2f content_area(-1, -1); bool replaced_element = false; // If the element has intrinsic dimensions, then we use those as the basis for the content area and only adjust // them if a non-auto style has been applied to them. if (element->GetIntrinsicDimensions(content_area)) { replaced_element = true; Vector2f original_content_area = content_area; // The element has resized itself, so we only resize it if a RCSS width or height was set explicitly. A value of // 'auto' (or 'auto-fit', ie, both keywords) means keep (or adjust) the intrinsic dimensions. bool auto_width = false, auto_height = false; const Property* width_property = element->GetProperty(WIDTH); if (width_property->unit != Property::KEYWORD) content_area.x = element->ResolveProperty(WIDTH, containing_block.x); else auto_width = true; const Property* height_property = element->GetProperty(HEIGHT); if (height_property->unit != Property::KEYWORD) content_area.y = element->ResolveProperty(HEIGHT, containing_block.y); else auto_height = true; // If one of the dimensions is 'auto' then we need to scale it such that the original ratio is preserved. if (auto_width && !auto_height) content_area.x = (content_area.y / original_content_area.y) * original_content_area.x; else if (auto_height && !auto_width) content_area.y = (content_area.x / original_content_area.x) * original_content_area.y; // Reduce the width and height to make up for borders and padding. content_area.x -= (box.GetEdge(Box::BORDER, Box::LEFT) + box.GetEdge(Box::PADDING, Box::LEFT) + box.GetEdge(Box::BORDER, Box::RIGHT) + box.GetEdge(Box::PADDING, Box::RIGHT)); content_area.y -= (box.GetEdge(Box::BORDER, Box::TOP) + box.GetEdge(Box::PADDING, Box::TOP) + box.GetEdge(Box::BORDER, Box::BOTTOM) + box.GetEdge(Box::PADDING, Box::BOTTOM)); content_area.x = Math::Max(content_area.x, 0.0f); content_area.y = Math::Max(content_area.y, 0.0f); } // If the element is inline, then its calculations are much more straightforward (no worrying about auto margins // and dimensions, etc). All we do is calculate the margins, set the content area and bail. if (inline_element) { if (replaced_element) { content_area.x = ClampWidth(content_area.x, element, containing_block.x); content_area.y = ClampWidth(content_area.y, element, containing_block.y); } // If the element was not replaced, then we leave its dimension as unsized (-1, -1) and ignore the width and // height properties. box.SetContent(content_area); // Evaluate the margins. Any declared as 'auto' will resolve to 0. box.SetEdge(Box::MARGIN, Box::TOP, element->ResolveProperty(MARGIN_TOP, containing_block.x)); box.SetEdge(Box::MARGIN, Box::RIGHT, element->ResolveProperty(MARGIN_RIGHT, containing_block.x)); box.SetEdge(Box::MARGIN, Box::BOTTOM, element->ResolveProperty(MARGIN_BOTTOM, containing_block.x)); box.SetEdge(Box::MARGIN, Box::LEFT, element->ResolveProperty(MARGIN_LEFT, containing_block.x)); } // The element is block, so we need to run the box through the ringer to potentially evaluate auto margins and // dimensions. else { box.SetContent(content_area); BuildBoxWidth(box, element, containing_block.x); BuildBoxHeight(box, element, containing_block.y); } } // Generates the box for an element placed in a block box. void LayoutEngine::BuildBox(Box& box, float& min_height, float& max_height, LayoutBlockBox* containing_box, Element* element, bool inline_element) { Vector2f containing_block = GetContainingBlock(containing_box); BuildBox(box, GetContainingBlock(containing_box), element, inline_element); float box_height = box.GetSize().y; if (box_height < 0) { if (element->GetLocalProperty(MIN_HEIGHT) != NULL) min_height = element->ResolveProperty(MIN_HEIGHT, containing_block.y); else min_height = 0; if (element->GetLocalProperty(MAX_HEIGHT) != NULL) max_height = element->ResolveProperty(MAX_HEIGHT, containing_block.y); else max_height = FLT_MAX; } else { min_height = box_height; max_height = box_height; } } // Clamps the width of an element based from its min-width and max-width properties. float LayoutEngine::ClampWidth(float width, Element* element, float containing_block_width) { float min_width, max_width; if (element->GetLocalProperty(MIN_WIDTH) != NULL) min_width = element->ResolveProperty(MIN_WIDTH, containing_block_width); else min_width = 0; if (element->GetLocalProperty(MAX_WIDTH) != NULL) max_width = element->ResolveProperty(MAX_WIDTH, containing_block_width); else max_width = FLT_MAX; return Math::Clamp(width, min_width, max_width); } // Clamps the height of an element based from its min-height and max-height properties. float LayoutEngine::ClampHeight(float height, Element* element, float containing_block_height) { float min_height, max_height; if (element->GetLocalProperty(MIN_HEIGHT) != NULL) min_height = element->ResolveProperty(MIN_HEIGHT, containing_block_height); else min_height = 0; if (element->GetLocalProperty(MAX_HEIGHT) != NULL) max_height = element->ResolveProperty(MAX_HEIGHT, containing_block_height); else max_height = FLT_MAX; return Math::Clamp(height, min_height, max_height); } // Rounds a vector of two floating-point values to integral values. Vector2f& LayoutEngine::Round(Vector2f& value) { value.x = Round(value.x); value.y = Round(value.y); return value; } // Rounds a floating-point value to an integral value. float LayoutEngine::Round(float value) { return ceilf(value); } void* LayoutEngine::AllocateLayoutChunk(size_t size) { (size); ROCKET_ASSERT(size <= LayoutChunk::size); return layout_chunk_pool.AllocateObject(); } void LayoutEngine::DeallocateLayoutChunk(void* chunk) { layout_chunk_pool.DeallocateObject((LayoutChunk*) chunk); } // Positions a single element and its children within this layout. bool LayoutEngine::FormatElement(Element* element) { // Check if we have to do any special formatting for any elements that don't fit into the standard layout scheme. if (FormatElementSpecial(element)) return true; // Fetch the display property, and don't lay this element out if it is set to a display type of none. int display_property = element->GetProperty< int >(DISPLAY); if (display_property == DISPLAY_NONE) return true; // Check for an absolute position; if this has been set, then we remove it from the flow and add it to the current // block box to be laid out and positioned once the block has been closed and sized. int position_property = element->GetProperty< int >(POSITION); if (position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED) { // Display the element as a block element. block_context_box->AddAbsoluteElement(element); return true; } // If the element is floating, we remove it from the flow. int float_property = element->GetProperty< int >(FLOAT); if (float_property != FLOAT_NONE) { // Format the element as a block element. LayoutEngine layout_engine; layout_engine.FormatElement(element, GetContainingBlock(block_context_box)); return block_context_box->AddFloatElement(element); } // The element is nothing exceptional, so we treat it as a normal block, inline or replaced element. switch (display_property) { case DISPLAY_BLOCK: return FormatElementBlock(element); break; case DISPLAY_INLINE: return FormatElementInline(element); break; case DISPLAY_INLINE_BLOCK: FormatElementReplaced(element); break; default: ROCKET_ERROR; } return true; } // Formats and positions an element as a block element. bool LayoutEngine::FormatElementBlock(Element* element) { LayoutBlockBox* new_block_context_box = block_context_box->AddBlockElement(element); if (new_block_context_box == NULL) return false; block_context_box = new_block_context_box; // Format the element's children. for (int i = 0; i < element->GetNumChildren(); i++) { if (!FormatElement(element->GetChild(i))) i = -1; } // Close the block box, and check the return code; we may have overflowed either this element or our parent. new_block_context_box = block_context_box->GetParent(); switch (block_context_box->Close()) { // We need to reformat ourself; format all of our children again and close the box. No need to check for error // codes, as we already have our vertical slider bar. case LayoutBlockBox::LAYOUT_SELF: { for (int i = 0; i < element->GetNumChildren(); i++) FormatElement(element->GetChild(i)); if (block_context_box->Close() == LayoutBlockBox::OK) { element->OnLayout(); break; } } // We caused our parent to add a vertical scrollbar; bail out! case LayoutBlockBox::LAYOUT_PARENT: { block_context_box = new_block_context_box; return false; } break; default: element->OnLayout(); } block_context_box = new_block_context_box; return true; } // Formats and positions an element as an inline element. bool LayoutEngine::FormatElementInline(Element* element) { Box box; float min_height, max_height; BuildBox(box, min_height, max_height, block_context_box, element, true); LayoutInlineBox* inline_box = block_context_box->AddInlineElement(element, box); // Format the element's children. for (int i = 0; i < element->GetNumChildren(); i++) { if (!FormatElement(element->GetChild(i))) return false; } inline_box->Close(); // element->OnLayout(); return true; } // Positions an element as a sized inline element, formatting its internal hierarchy as a block element. void LayoutEngine::FormatElementReplaced(Element* element) { // Format the element separately as a block element, then position it inside our own layout as an inline element. LayoutEngine layout_engine; layout_engine.FormatElement(element, GetContainingBlock(block_context_box)); block_context_box->AddInlineElement(element, element->GetBox())->Close(); } // Executes any special formatting for special elements. bool LayoutEngine::FormatElementSpecial(Element* element) { static String br("br"); // Check for a
tag. if (element->GetTagName() == br) { block_context_box->AddBreak(); element->OnLayout(); return true; } return false; } // Returns the fully-resolved, fixed-width and -height containing block from a block box. Vector2f LayoutEngine::GetContainingBlock(const LayoutBlockBox* containing_box) { Vector2f containing_block; containing_block.x = containing_box->GetBox().GetSize(Box::CONTENT).x; if (containing_box->GetElement() != NULL) containing_block.x -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::VERTICAL); while ((containing_block.y = containing_box->GetBox().GetSize(Box::CONTENT).y) < 0) { containing_box = containing_box->GetParent(); if (containing_box == NULL) { ROCKET_ERROR; containing_block.y = 0; } } if (containing_box != NULL && containing_box->GetElement() != NULL) containing_block.y -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::HORIZONTAL); containing_block.x = Math::Max(0.0f, containing_block.x); containing_block.y = Math::Max(0.0f, containing_block.y); return containing_block; } // Builds the block-specific width and horizontal margins of a Box. void LayoutEngine::BuildBoxWidth(Box& box, Element* element, float containing_block_width) { Vector2f content_area = box.GetSize(); // Determine if the element has an automatic width, and if not calculate it. bool width_auto; int display_property = element->GetProperty< int >(DISPLAY); if (display_property == DISPLAY_INLINE_BLOCK) { width_auto = false; } else { const Property* width_property = element->GetProperty(WIDTH); if (width_property->unit == Property::KEYWORD) { width_auto = true; } else { width_auto = false; content_area.x = element->ResolveProperty(WIDTH, containing_block_width); } } // Determine if the element has automatic margins. bool margins_auto[2]; int num_auto_margins = 0; for (int i = 0; i < 2; ++i) { const String& property_name = i == 0 ? MARGIN_LEFT : MARGIN_RIGHT; const Property* margin_property = element->GetLocalProperty(property_name); if (margin_property != NULL && margin_property->unit == Property::KEYWORD) { margins_auto[i] = true; num_auto_margins++; } else { margins_auto[i] = false; box.SetEdge(Box::MARGIN, i == 0 ? Box::LEFT : Box::RIGHT, element->ResolveProperty(property_name, containing_block_width)); } } // If the width is set to auto, then any margins also set to auto are resolved to 0 and the width is set to the // whatever if left of the containing block. if (width_auto) { if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::LEFT, 0); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::RIGHT, 0); content_area.x = containing_block_width - (box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) + box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT)); content_area.x = Math::Max(0.0f, content_area.x); } // Otherwise, the margins that are set to auto will pick up the remaining width of the containing block. else if (num_auto_margins > 0) { float margin = (containing_block_width - (box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) + box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT) + content_area.x)) / num_auto_margins; if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::LEFT, margin); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::RIGHT, margin); } // In the case we're an absolutely positioned element, we need to check our width. int position_property = element->GetProperty< int >(POSITION); if (display_property == DISPLAY_BLOCK && (position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED)) { if (width_auto) { const Property* leftProp = element->GetLocalProperty(LEFT); const Property* rightProp = element->GetLocalProperty(RIGHT); // Check for left and right properties both being defined. if ((leftProp != NULL) && (rightProp != NULL)) { content_area.x = containing_block_width - (box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) + box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT) + leftProp->Get() + rightProp->Get()); content_area.x = Math::Max(0.0f, content_area.x); } } else { // For now, we're ignoring the over-constrained situation } } // Clamp the calculated width; if the width is changed by the clamp, then the margins need to be recalculated if // they were set to auto. float clamped_width = ClampWidth(content_area.x, element, containing_block_width); if (clamped_width != content_area.x) { content_area.x = clamped_width; box.SetContent(content_area); if (num_auto_margins > 0) { // Reset the automatic margins. if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::LEFT, 0); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::RIGHT, 0); BuildBoxWidth(box, element, containing_block_width); } } else box.SetContent(content_area); } // Builds the block-specific height and vertical margins of a Box. void LayoutEngine::BuildBoxHeight(Box& box, Element* element, float containing_block_height) { Vector2f content_area = box.GetSize(); // Determine if the element has an automatic height, and if not calculate it. bool height_auto; int display_property = element->GetProperty< int >(DISPLAY); if (display_property == DISPLAY_INLINE_BLOCK) { height_auto = false; } else { const Property* height_property = element->GetProperty(HEIGHT); if (height_property->unit == Property::KEYWORD) { height_auto = true; } else { height_auto = false; if (height_property != NULL) content_area.y = element->ResolveProperty(HEIGHT, containing_block_height); } } // Determine if the element has automatic margins. bool margins_auto[2]; int num_auto_margins = 0; for (int i = 0; i < 2; ++i) { const String& property_name = i == 0 ? MARGIN_TOP : MARGIN_BOTTOM; const Property* margin_property = element->GetLocalProperty(property_name); if (margin_property != NULL && margin_property->unit == Property::KEYWORD) { margins_auto[i] = true; num_auto_margins++; } else { margins_auto[i] = false; box.SetEdge(Box::MARGIN, i == 0 ? Box::TOP : Box::BOTTOM, element->ResolveProperty(property_name, containing_block_height)); } } // If the height is set to auto, then any margins also set to auto are resolved to 0 and the height is set to -1. if (height_auto) { if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::TOP, 0); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::BOTTOM, 0); content_area.y = -1; } // Otherwise, the margins that are set to auto will pick up the remaining width of the containing block. else if (num_auto_margins > 0) { float margin; if (content_area.y >= 0) { margin = (containing_block_height - (box.GetCumulativeEdge(Box::CONTENT, Box::TOP) + box.GetCumulativeEdge(Box::CONTENT, Box::BOTTOM) + content_area.y)) / num_auto_margins; } else margin = 0; if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::TOP, margin); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::BOTTOM, margin); } // In the case we're an absolutely positioned element, we need to check our height. int position_property = element->GetProperty< int >(POSITION); if (display_property == DISPLAY_BLOCK && (position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED)) { if (height_auto) { const Property* topProp = element->GetLocalProperty(TOP); const Property* bottomProp = element->GetLocalProperty(BOTTOM); // Check for top and bottom properties both being defined. if ((topProp != NULL) && (bottomProp != NULL)) { content_area.y = containing_block_height - (box.GetCumulativeEdge(Box::CONTENT, Box::TOP) + box.GetCumulativeEdge(Box::CONTENT, Box::BOTTOM) + topProp->Get() + bottomProp->Get()); content_area.y = Math::Max(0.0f, content_area.y); } } else { // For now, we're ignoring the over-constrained situation } } if (content_area.y >= 0) { // Clamp the calculated height; if the height is changed by the clamp, then the margins need to be recalculated if // they were set to auto. float clamped_height = ClampHeight(content_area.y, element, containing_block_height); if (clamped_height != content_area.y) { content_area.y = clamped_height; box.SetContent(content_area); if (num_auto_margins > 0) { // Reset the automatic margins. if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::TOP, 0); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::BOTTOM, 0); BuildBoxHeight(box, element, containing_block_height); } return; } } box.SetContent(content_area); } } }