# libdatachannel - C/C++ WebRTC Data Channels libdatachannel is a standalone implementation of WebRTC Data Channels and WebSockets in C++17 with C bindings for POSIX platforms (including Linux and Apple macOS) and Microsoft Windows. It enables direct connectivity between native applications and web browsers without the pain of importing the entire WebRTC stack. The interface consists of simplified versions of the JavaScript WebRTC and WebSocket APIs present in browsers, in order to ease the design of cross-environment applications. It can be compiled with multiple backends: - The security layer can be provided through [GnuTLS](https://www.gnutls.org/) or [OpenSSL](https://www.openssl.org/). - The connectivity for WebRTC can be provided through my ad-hoc ICE library [libjuice](https://github.com/paullouisageneau/libjuice) as submodule or through [libnice](https://github.com/libnice/libnice). This projet is originally inspired by [librtcdcpp](https://github.com/chadnickbok/librtcdcpp), however it is a complete rewrite from scratch, because the messy architecture of librtcdcpp made solving its implementation issues difficult. Licensed under LGPLv2, see [LICENSE](https://github.com/paullouisageneau/libdatachannel/blob/master/LICENSE). ## Compatibility The library aims at implementing the following communication protocols: ### WebRTC Data Channel The WebRTC stack has been tested to be compatible with Firefox and Chromium. Protocol stack: - SCTP-based Data Channels ([draft-ietf-rtcweb-data-channel-13](https://tools.ietf.org/html/draft-ietf-rtcweb-data-channel-13)) - DTLS/UDP ([RFC7350](https://tools.ietf.org/html/rfc7350) and [RFC8261](https://tools.ietf.org/html/rfc8261)) - ICE ([RFC8445](https://tools.ietf.org/html/rfc8445)) with STUN ([RFC5389](https://tools.ietf.org/html/rfc5389)) Features: - Full IPv6 support - Trickle ICE ([draft-ietf-ice-trickle-21](https://tools.ietf.org/html/draft-ietf-ice-trickle-21)) - JSEP compatible ([draft-ietf-rtcweb-jsep-26](https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-26)) - Multicast DNS candidates ([draft-ietf-rtcweb-mdns-ice-candidates-04](https://tools.ietf.org/html/draft-ietf-rtcweb-mdns-ice-candidates-04)) - TURN relaying ([RFC5766](https://tools.ietf.org/html/rfc5766)) with [libnice](https://github.com/libnice/libnice) as ICE backend - SRTP media transport ([RFC3711](https://tools.ietf.org/html/rfc3711)) with [libSRTP](https://github.com/cisco/libsrtp) ### WebSocket WebSocket is the protocol of choice for WebRTC signaling. The support is optional and can be disabled at compile time. Protocol stack: - WebSocket protocol ([RFC6455](https://tools.ietf.org/html/rfc6455)), client-side only - HTTP over TLS ([RFC2818](https://tools.ietf.org/html/rfc2818)) Features: - IPv6 and IPv4/IPv6 dual-stack support - Keepalive with ping/pong ## Dependencies - GnuTLS: https://www.gnutls.org/ or OpenSSL: https://www.openssl.org/ Optional: - libnice: https://nice.freedesktop.org/ (substituable with libjuice) - libSRTP: https://github.com/cisco/libsrtp Submodules: - libjuice: https://github.com/paullouisageneau/libjuice - usrsctp: https://github.com/sctplab/usrsctp ## Building ### Building with CMake (preferred) ```bash $ git submodule update --init --recursive $ mkdir build $ cd build $ cmake -DUSE_JUICE=1 -DUSE_GNUTLS=1 .. $ make ``` ### Building directly with Make ```bash $ git submodule update --init --recursive $ make USE_JUICE=1 USE_GNUTLS=1 ``` ## Examples See [examples](https://github.com/paullouisageneau/libdatachannel/blob/master/examples/) for a complete usage example with signaling server (under GPLv2). Additionnaly, you might want to have a look at the [C API](https://github.com/paullouisageneau/libdatachannel/blob/dev/include/rtc/rtc.h). ### Signal a PeerConnection ```cpp #include "rtc/rtc.hpp" ``` ```cpp rtc::Configuration config; config.iceServers.emplace_back("mystunserver.org:3478"); auto pc = make_shared(config); pc->onLocalDescription([](const rtc::Description &sdp) { // Send the SDP to the remote peer MY_SEND_DESCRIPTION_TO_REMOTE(string(sdp)); }); pc->onLocalCandidate([](const rtc::Candidate &candidate) { // Send the candidate to the remote peer MY_SEND_CANDIDATE_TO_REMOTE(candidate.candidate(), candidate.mid()); }); MY_ON_RECV_DESCRIPTION_FROM_REMOTE([pc](string sdp) { pc->setRemoteDescription(rtc::Description(sdp)); }); MY_ON_RECV_CANDIDATE_FROM_REMOTE([pc](string candidate, string mid) { pc->addRemoteCandidate(rtc::Candidate(candidate, mid)); }); ``` ### Observe the PeerConnection state ```cpp pc->onStateChange([](PeerConnection::State state) { cout << "State: " << state << endl; }); pc->onGatheringStateChange([](PeerConnection::GatheringState state) { cout << "Gathering state: " << state << endl; }); ``` ### Create a DataChannel ```cpp auto dc = pc->createDataChannel("test"); dc->onOpen([]() { cout << "Open" << endl; }); dc->onMessage([](const variant &message) { if (holds_alternative(message)) { cout << "Received: " << get(message) << endl; } }); ``` ### Receive a DataChannel ```cpp shared_ptr dc; pc->onDataChannel([&dc](shared_ptr incoming) { dc = incoming; dc->send("Hello world!"); }); ``` ### Open a WebSocket ```cpp auto ws = make_shared(); ws->onOpen([]() { cout << "WebSocket open" << endl; }); ws->onMessage([](const variant &message) { if (holds_alternative(message)) { cout << "WebSocket received: " << get(message) << endl; } }); ws->open("wss://my.websocket/service"); ```