|
|
@@ -14,6 +14,8 @@
|
|
|
// 1. U_precomputed, Psi, Omega should be #V by 10 instead of #V by 16
|
|
|
// 2. Vectorize Psi computation.
|
|
|
|
|
|
+bool use_10_float = true;
|
|
|
+
|
|
|
template <
|
|
|
typename DerivedV,
|
|
|
typename DerivedF,
|
|
|
@@ -48,13 +50,20 @@ IGL_INLINE void igl::direct_delta_mush(
|
|
|
assert(E.cols() == 2 && "E should contain 2 endpoint indices forming bone edges.");
|
|
|
assert(E.rows() == T.size() && "E.rows() should equal to T.size()");
|
|
|
assert(Omega.rows() == V.rows() && "Omega contain the same number of rows as V.");
|
|
|
- assert(Omega.cols() == T.size() * 16 && "Omega should have #T*10 columns.");
|
|
|
+ if (use_10_float)
|
|
|
+ {
|
|
|
+ assert(Omega.cols() == T.size() * 10 && "Omega should have #T*10 columns.");
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ assert(Omega.cols() == T.size() * 16 && "Omega should have #T*16 columns.");
|
|
|
+ }
|
|
|
|
|
|
int n = V.rows();
|
|
|
int m = T.size();
|
|
|
|
|
|
- Eigen::MatrixXd U_homogeneous(n, 4);
|
|
|
- U_homogeneous << V, Eigen::VectorXd::Ones(n);
|
|
|
+ Eigen::MatrixXd V_homogeneous(n, 4);
|
|
|
+ V_homogeneous << V, Eigen::VectorXd::Ones(n);
|
|
|
U.resize(n, 3);
|
|
|
|
|
|
// R matrix
|
|
|
@@ -65,8 +74,23 @@ IGL_INLINE void igl::direct_delta_mush(
|
|
|
Eigen::MatrixXd Q_mat = Eigen::MatrixXd::Zero(4, 4);
|
|
|
for (int j = 0; j < m; j++)
|
|
|
{
|
|
|
- Eigen::MatrixXd Omega_curr = Omega.block(i, j * 16, 1, 16);
|
|
|
- Omega_curr.resize(4, 4);
|
|
|
+ Eigen::MatrixXd Omega_curr;
|
|
|
+ if (use_10_float)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd curr = Omega.block(i, j * 10, 1, 10);
|
|
|
+ Eigen::VectorXd curr_vec(
|
|
|
+ Eigen::Map<Eigen::VectorXd>(curr.data(), curr.cols() * curr.rows()));
|
|
|
+ Omega_curr.resize(4, 4);
|
|
|
+ Omega_curr << curr_vec(0), curr_vec(1), curr_vec(2), curr_vec(3),
|
|
|
+ curr_vec(1), curr_vec(4), curr_vec(5), curr_vec(6),
|
|
|
+ curr_vec(2), curr_vec(5), curr_vec(7), curr_vec(8),
|
|
|
+ curr_vec(3), curr_vec(6), curr_vec(8), curr_vec(9);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ Omega_curr = Omega.block(i, j * 16, 1, 16);
|
|
|
+ Omega_curr.resize(4, 4);
|
|
|
+ }
|
|
|
Eigen::Affine3d M_curr = T[j];
|
|
|
Q_mat += M_curr.matrix() * Omega_curr;
|
|
|
}
|
|
|
@@ -76,7 +100,7 @@ IGL_INLINE void igl::direct_delta_mush(
|
|
|
|
|
|
Eigen::MatrixXd SVD_i = Q_i - q_i * p_i;
|
|
|
Eigen::JacobiSVD<MatrixXd> svd;
|
|
|
- svd.compute(SVD_i, Eigen::ComputeFullU | Eigen::ComputeFullV );
|
|
|
+ svd.compute(SVD_i, Eigen::ComputeFullU | Eigen::ComputeFullV);
|
|
|
|
|
|
// rotation and translation
|
|
|
Eigen::MatrixXd R_i = svd.matrixU() * svd.matrixV().transpose();
|
|
|
@@ -88,8 +112,8 @@ IGL_INLINE void igl::direct_delta_mush(
|
|
|
Gamma_i.block(0, 3, 3, 1) = t_i;
|
|
|
|
|
|
// transform
|
|
|
- Eigen::VectorXd u_i = U_homogeneous.row(i);
|
|
|
- U.row(i) = Gamma_i * u_i;
|
|
|
+ Eigen::VectorXd v_i = V_homogeneous.row(i);
|
|
|
+ U.row(i) = Gamma_i * v_i;
|
|
|
}
|
|
|
|
|
|
cout << "END DDM" << endl;
|
|
|
@@ -146,8 +170,9 @@ IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
const int m = E.rows();
|
|
|
|
|
|
// U: #V by 4, homogeneous version of V
|
|
|
- Eigen::MatrixXd U_homogeneous(n, 4);
|
|
|
- U_homogeneous << V, Eigen::VectorXd::Ones(n);
|
|
|
+ // Using U to match notation from the paper
|
|
|
+ Eigen::MatrixXd U(n, 4);
|
|
|
+ U << V, Eigen::VectorXd::Ones(n);
|
|
|
|
|
|
// Identity of #V by #V
|
|
|
Eigen::SparseMatrix<double> I(n, n);
|
|
|
@@ -171,7 +196,7 @@ IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
Eigen::SparseMatrix<double> D_L_inv = D_L.asDiagonal().toDenseMatrix().sparseView();
|
|
|
Eigen::SparseMatrix<double> L_bar = L * D_L_inv;
|
|
|
|
|
|
- // Implicitly and iteratively solve
|
|
|
+ // Implicitly and iteratively solve for W'
|
|
|
// w'_{ij} = \sum_{k=1}^{n}{C_{ki} w_{kj}} where C = (I + kappa L_bar)^{-p}:
|
|
|
// W' = C^T \times W => c^T W_k = W_{k-1} where c = (I + kappa L_bar)
|
|
|
// C positive semi-definite => ldlt solver
|
|
|
@@ -189,12 +214,15 @@ IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
cout << "W_prime: " << W_prime.rows() << " x " << W_prime.cols()
|
|
|
<< " Sum: " << W_prime.sum() << endl;
|
|
|
|
|
|
- // Psi was hard to solve iteratively since i couldn't express u_k \times u_k^T as matrix form
|
|
|
+ // Using U~ = UB to solve for B
|
|
|
+ // NOTE
|
|
|
+ // - B is calculated explicitly because Psi was not vectorized
|
|
|
+ // - U~ = UB is used to calculate B because using B b^{-p} = I does not work
|
|
|
+ // B is positive semi-definite => ldlt solver
|
|
|
Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt_U_tilde;
|
|
|
- Eigen::SparseMatrix<double> b(I + lambda * L_bar);
|
|
|
+ Eigen::SparseMatrix<double> b((I + lambda * L_bar).transpose());
|
|
|
ldlt_U_tilde.compute(b);
|
|
|
-
|
|
|
- Eigen::SparseMatrix<double> U_tilde = U_homogeneous.sparseView();
|
|
|
+ Eigen::SparseMatrix<double> U_tilde = U.sparseView();
|
|
|
cout << "computing U_tilde" << endl;
|
|
|
for (int i = 0; i < p; i++)
|
|
|
{
|
|
|
@@ -204,47 +232,100 @@ IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
cout << "U_tilde: " << U_tilde.rows() << " x " << U_tilde.cols()
|
|
|
<< " Sum: " << U_tilde.sum() << endl;
|
|
|
|
|
|
- // TODO: sparse didn't work here - malloc error
|
|
|
+ // Solving for B
|
|
|
+ // Using Dense instead of Sparse since sparse cannot solve the linear system (hangs)
|
|
|
Eigen::MatrixXd U_tilde_dense = U_tilde.toDense();
|
|
|
- Eigen::MatrixXd B_inv_dense = U_homogeneous.transpose().householderQr().solve(
|
|
|
+ Eigen::MatrixXd B_inv_dense = U.transpose().householderQr().solve(
|
|
|
U_tilde_dense.transpose());
|
|
|
Eigen::SparseMatrix<double> B_inv = B_inv_dense.sparseView();
|
|
|
+ // // this won't work
|
|
|
// Eigen::SparseQR<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>> qr_B;
|
|
|
- // Eigen::SparseMatrix<double> U_sparse = U_homogeneous.sparseView();
|
|
|
- // Eigen::SparseMatrix<double> V_sparse_transpose(U_sparse.transpose());
|
|
|
- // Eigen::SparseMatrix<double> V_tilde_transpose(U_tilde.transpose());
|
|
|
- // V_sparse_transpose.makeCompressed();
|
|
|
- // qr_B.compute(V_sparse_transpose);
|
|
|
- // Eigen::SparseMatrix<double> B_inv = qr_B.solve(V_tilde_transpose);
|
|
|
+ // Eigen::SparseMatrix<double> U_sparse_transpose(U.transpose().sparseView());
|
|
|
+ // Eigen::SparseMatrix<double> U_tilde_transpose(U_tilde.toDense().transpose().sparseView());
|
|
|
+ // U_sparse_transpose.makeCompressed();
|
|
|
+ // qr_B.compute(U_sparse_transpose);
|
|
|
+ // Eigen::SparseMatrix<double> B_inv = qr_B.solve(U_tilde_transpose);
|
|
|
+ // // This won't work
|
|
|
+ // Eigen::SparseMatrix<double> B_inv(I);
|
|
|
+ // Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt_B;
|
|
|
+ // ldlt_B.compute(b);
|
|
|
+ // for (int i = 0; i < p; ++i)
|
|
|
+ // {
|
|
|
+ // cout << i << endl;
|
|
|
+ // B_inv.makeCompressed();
|
|
|
+ // B_inv = ldlt_B.solve(B_inv);
|
|
|
+ // }
|
|
|
+ // B_inv = B_inv.toDense().inverse().sparseView();
|
|
|
cout << "B_inv: " << B_inv.rows() << " x " << B_inv.cols() << " Sum: " << B_inv.sum() << endl;
|
|
|
|
|
|
// U_precomputed: #V by 16(10)
|
|
|
// U_precomputed.row(i) = u_i \dot u_i^T \in R^{4 x 4}
|
|
|
- Eigen::MatrixXd U_precomputed(n, 16);
|
|
|
- for (int k = 0; k < n; k++)
|
|
|
+ Eigen::MatrixXd U_precomputed;
|
|
|
+ if (use_10_float)
|
|
|
{
|
|
|
- Eigen::MatrixXd u_full = U_homogeneous.row(k).transpose() * U_homogeneous.row(k);
|
|
|
- Eigen::VectorXd u_full_vector(
|
|
|
- Eigen::Map<Eigen::VectorXd>(u_full.data(), u_full.cols() * u_full.rows()));
|
|
|
- U_precomputed.row(k) = u_full_vector;
|
|
|
+ U_precomputed.resize(n, 10);
|
|
|
+ for (int k = 0; k < n; k++)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd u_full = U.row(k).transpose() * U.row(k);
|
|
|
+ // TODO: extract this as a lambda function
|
|
|
+ int vector_idx = 0;
|
|
|
+ for (int i = 0; i < u_full.rows(); i++)
|
|
|
+ {
|
|
|
+ for (int j = i; j < u_full.cols(); ++j)
|
|
|
+ {
|
|
|
+ U_precomputed(k, vector_idx) = u_full(i, j);
|
|
|
+ vector_idx++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ U_precomputed.resize(n, 16);
|
|
|
+ for (int k = 0; k < n; k++)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd u_full = U.row(k).transpose() * U.row(k);
|
|
|
+ Eigen::VectorXd u_full_vector(
|
|
|
+ Eigen::Map<Eigen::VectorXd>(u_full.data(), u_full.cols() * u_full.rows()));
|
|
|
+ U_precomputed.row(k) = u_full_vector;
|
|
|
+ }
|
|
|
}
|
|
|
cout << "U_precomputed: " << U_precomputed.rows() << " x " << U_precomputed.cols()
|
|
|
<< " Sum: " << U_precomputed.sum() << endl;
|
|
|
|
|
|
// Psi: #V by #T*16 (10) of \Psi_{ij}s.
|
|
|
// this takes a while since it is not vectorized
|
|
|
- // Eigen::MatrixXd Psi = Eigen::MatrixXd::Ones(n, m * 16); // for debugging to skip computation
|
|
|
- Eigen::MatrixXd Psi(n, m * 16);
|
|
|
- for (int i = 0; i < n; i++)
|
|
|
+ Eigen::MatrixXd Psi;
|
|
|
+ if (use_10_float)
|
|
|
{
|
|
|
- for (int j = 0; j < m; j++)
|
|
|
+ Psi.resize(n, m * 10);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
{
|
|
|
- Eigen::VectorXd Psi_curr = Eigen::VectorXd::Zero(16);
|
|
|
- for (int k = 0; k < n; k++)
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
{
|
|
|
- Psi_curr += B_inv.coeff(k, i) * W.coeff(k, j) * U_precomputed.row(k);
|
|
|
+ Eigen::VectorXd Psi_curr = Eigen::VectorXd::Zero(10);
|
|
|
+ for (int k = 0; k < n; k++)
|
|
|
+ {
|
|
|
+ Psi_curr += B_inv.coeff(k, i) * W.coeff(k, j) * U_precomputed.row(k);
|
|
|
+ }
|
|
|
+ Psi.block(i, j * 10, 1, 10) = Psi_curr.transpose();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ Psi.resize(n, m * 16);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
+ {
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
+ {
|
|
|
+ Eigen::VectorXd Psi_curr = Eigen::VectorXd::Zero(16);
|
|
|
+ for (int k = 0; k < n; k++)
|
|
|
+ {
|
|
|
+ Psi_curr += B_inv.coeff(k, i) * W.coeff(k, j) * U_precomputed.row(k);
|
|
|
+ }
|
|
|
+ Psi.block(i, j * 16, 1, 16) = Psi_curr.transpose();
|
|
|
}
|
|
|
- Psi.block(i, j * 16, 1, 16) = Psi_curr.transpose();
|
|
|
}
|
|
|
}
|
|
|
cout << "Psi: " << Psi.rows() << " x " << Psi.cols() << " Sum: " << Psi.sum() << endl;
|
|
|
@@ -253,38 +334,88 @@ IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
// p_i p_i^T , p_i
|
|
|
// p_i^T , 1
|
|
|
// p_i: sum_{j=1}^{n} Psi_{ij} top right 3 by 1 column
|
|
|
- Eigen::MatrixXd P_vectors(n, 16);
|
|
|
- for (int i = 0; i < n; i++)
|
|
|
+ Eigen::MatrixXd P;
|
|
|
+ if (use_10_float)
|
|
|
{
|
|
|
- Eigen::Vector3d p_i = Eigen::Vector3d::Zero(3);
|
|
|
- for (int j = 0; j < m; j++)
|
|
|
+ P.resize(n, 10);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
+ {
|
|
|
+ Eigen::Vector3d p_i = Eigen::Vector3d::Zero(3);
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
+ {
|
|
|
+ Eigen::Vector3d p_i_curr(3);
|
|
|
+ p_i_curr << Psi(i, j * 10 + 3), Psi(i, j * 10 + 6), Psi(i, j * 10 + 8);
|
|
|
+ p_i += p_i_curr;
|
|
|
+ }
|
|
|
+ Eigen::MatrixXd p_matrix(4, 4);
|
|
|
+ p_matrix.block(0, 0, 3, 3) = p_i * p_i.transpose();
|
|
|
+ p_matrix.block(3, 0, 1, 3) = p_i.transpose();
|
|
|
+ p_matrix.block(0, 3, 3, 1) = p_i;
|
|
|
+ p_matrix(3, 3) = 1;
|
|
|
+ int vector_idx = 0;
|
|
|
+ for (int ii = 0; ii < p_matrix.rows(); ii++)
|
|
|
+ {
|
|
|
+ for (int jj = ii; jj < p_matrix.cols(); jj++)
|
|
|
+ {
|
|
|
+ P(i, vector_idx) = p_matrix(ii, jj);
|
|
|
+ vector_idx++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ P.resize(n, 16);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
{
|
|
|
- Eigen::Vector3d p_i_curr(3);
|
|
|
- p_i_curr << Psi(i, j * 16 + 3), Psi(i, j * 16 + 7), Psi(i, j * 16 + 11);
|
|
|
- p_i += p_i_curr;
|
|
|
+ Eigen::Vector3d p_i = Eigen::Vector3d::Zero(3);
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
+ {
|
|
|
+ Eigen::Vector3d p_i_curr(3);
|
|
|
+ p_i_curr << Psi(i, j * 16 + 3), Psi(i, j * 16 + 7), Psi(i, j * 16 + 11);
|
|
|
+ p_i += p_i_curr;
|
|
|
+ }
|
|
|
+ Eigen::MatrixXd p_matrix(4, 4);
|
|
|
+ p_matrix.block(0, 0, 3, 3) = p_i * p_i.transpose();
|
|
|
+ p_matrix.block(3, 0, 1, 3) = p_i.transpose();
|
|
|
+ p_matrix.block(0, 3, 3, 1) = p_i;
|
|
|
+ p_matrix(3, 3) = 1;
|
|
|
+ P.row(i) = Eigen::Map<Eigen::VectorXd>(
|
|
|
+ p_matrix.data(), p_matrix.cols() * p_matrix.rows());
|
|
|
}
|
|
|
- Eigen::MatrixXd p_matrix(4, 4);
|
|
|
- p_matrix.block(0, 0, 3, 3) = p_i * p_i.transpose();
|
|
|
- p_matrix.block(3, 0, 1, 3) = p_i.transpose();
|
|
|
- p_matrix.block(0, 3, 3, 1) = p_i;
|
|
|
- p_matrix(3, 3) = 1;
|
|
|
- P_vectors.row(i) = Eigen::Map<Eigen::VectorXd>(
|
|
|
- p_matrix.data(), p_matrix.cols() * p_matrix.rows());
|
|
|
}
|
|
|
- cout << "P_vectors: " << P_vectors.rows() << " x " << P_vectors.cols() << " Sum: "
|
|
|
- << P_vectors.sum() << endl;
|
|
|
+ cout << "P: " << P.rows() << " x " << P.cols() << " Sum: " << P.sum() << endl;
|
|
|
|
|
|
// Omega
|
|
|
- Omega.resize(n, m * 16);
|
|
|
- for (int i = 0; i < n; i++)
|
|
|
+ if (use_10_float)
|
|
|
{
|
|
|
- Eigen::MatrixXd p_vector = P_vectors.row(i);
|
|
|
- for (int j = 0; j < m; j++)
|
|
|
+ Omega.resize(n, m * 10);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd p_vector = P.row(i);
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd Omega_curr(1, 10);
|
|
|
+ Eigen::MatrixXd Psi_curr = Psi.block(i, j * 10, 1, 10);
|
|
|
+ Omega_curr = (1 - alpha) * Psi_curr + alpha * W_prime.coeff(i, j) * p_vector;
|
|
|
+ Omega.block(i, j * 10, 1, 10) = Omega_curr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ Omega.resize(n, m * 16);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
{
|
|
|
- Eigen::MatrixXd Omega_curr(1, 16);
|
|
|
- Eigen::MatrixXd Psi_curr = Psi.block(i, j * 16, 1, 16);
|
|
|
- Omega_curr = (1 - alpha) * Psi_curr + alpha * W_prime.coeff(i, j) * p_vector;
|
|
|
- Omega.block(i, j * 16, 1, 16) = Omega_curr;
|
|
|
+ Eigen::MatrixXd p_vector = P.row(i);
|
|
|
+ for (int j = 0; j < m; j++)
|
|
|
+ {
|
|
|
+ Eigen::MatrixXd Omega_curr(1, 16);
|
|
|
+ Eigen::MatrixXd Psi_curr = Psi.block(i, j * 16, 1, 16);
|
|
|
+ Omega_curr = (1 - alpha) * Psi_curr + alpha * W_prime.coeff(i, j) * p_vector;
|
|
|
+ Omega.block(i, j * 16, 1, 16) = Omega_curr;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
cout << "Omega: " << Omega.rows() << " x " << Omega.cols() << " Sum: " << Omega.sum() << endl;
|