|
|
@@ -0,0 +1,287 @@
|
|
|
+// This file is part of libigl, a simple C++ geometry processing library.
|
|
|
+//
|
|
|
+// Copyright (C) 2020 Xiangyu Kong <[email protected]>
|
|
|
+//
|
|
|
+// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
+// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
+#include "direct_delta_mush.h"
|
|
|
+#include "cotmatrix.h"
|
|
|
+
|
|
|
+template <
|
|
|
+ typename DerivedV,
|
|
|
+ typename DerivedF,
|
|
|
+ typename DerivedOmega,
|
|
|
+ typename DerivedU>
|
|
|
+IGL_INLINE void igl::direct_delta_mush(
|
|
|
+ const Eigen::MatrixBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixBase<DerivedF> & F,
|
|
|
+ const std::vector<Eigen::Affine3d, Eigen::aligned_allocator<Eigen::Affine3d> > & T,
|
|
|
+ const Eigen::MatrixBase<DerivedOmega> & Omega,
|
|
|
+ Eigen::PlainObjectBase<DerivedU> & U)
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+
|
|
|
+ // Shape checks
|
|
|
+ assert(V.cols() == 3 && "V should contain 3D positions.");
|
|
|
+ assert(F.cols() == 3 && "F should contain triangles.");
|
|
|
+ assert(Omega.rows() == V.rows() && "Omega contain the same number of rows as V.");
|
|
|
+ assert(Omega.cols() == T.size() * 10 && "Omega should have #T*10 columns.");
|
|
|
+
|
|
|
+ typedef typename DerivedV::Scalar Scalar;
|
|
|
+
|
|
|
+ int n = V.rows();
|
|
|
+ int m = T.size();
|
|
|
+
|
|
|
+ // V_homogeneous: #V by 4, homogeneous version of V
|
|
|
+ // Note:
|
|
|
+ // In the paper, the rest pose vertices are represented in U \in R^{4 x #V}
|
|
|
+ // Thus the formulae involving U would differ from the paper by a transpose.
|
|
|
+ Matrix<Scalar, Dynamic, 4> V_homogeneous(n, 4);
|
|
|
+ V_homogeneous << V, Matrix<Scalar, Dynamic, 1>::Ones(n, 1);
|
|
|
+ U.resize(n, 3);
|
|
|
+
|
|
|
+ for (int i = 0; i < n; ++i)
|
|
|
+ {
|
|
|
+ // Construct Q matrix using Omega and Transformations
|
|
|
+ Matrix<Scalar, 4, 4> Q_mat(4, 4);
|
|
|
+ Q_mat = Matrix<Scalar, 4, 4>::Zero(4, 4);
|
|
|
+ for (int j = 0; j < m; ++j)
|
|
|
+ {
|
|
|
+ Matrix<typename DerivedOmega::Scalar, 4, 4> Omega_curr(4, 4);
|
|
|
+ Matrix<typename DerivedOmega::Scalar, 10, 1> curr = Omega.block(i, j * 10, 1, 10).transpose();
|
|
|
+ Omega_curr << curr(0), curr(1), curr(2), curr(3),
|
|
|
+ curr(1), curr(4), curr(5), curr(6),
|
|
|
+ curr(2), curr(5), curr(7), curr(8),
|
|
|
+ curr(3), curr(6), curr(8), curr(9);
|
|
|
+
|
|
|
+ Affine3d M_curr = T[j];
|
|
|
+ Q_mat += M_curr.matrix() * Omega_curr;
|
|
|
+ }
|
|
|
+ // Normalize so that the last element is 1
|
|
|
+ Q_mat /= Q_mat(Q_mat.rows() - 1, Q_mat.cols() - 1);
|
|
|
+
|
|
|
+ Matrix<Scalar, 3, 3> Q_i = Q_mat.block(0, 0, 3, 3);
|
|
|
+ Matrix<Scalar, 3, 1> q_i = Q_mat.block(0, 3, 3, 1);
|
|
|
+ Matrix<Scalar, 3, 1> p_i = Q_mat.block(3, 0, 1, 3).transpose();
|
|
|
+
|
|
|
+ // Get rotation and translation matrices using SVD
|
|
|
+ Matrix<Scalar, 3, 3> SVD_i = Q_i - q_i * p_i.transpose();
|
|
|
+ JacobiSVD<Matrix<Scalar, 3, 3>> svd;
|
|
|
+ svd.compute(SVD_i, ComputeFullU | ComputeFullV);
|
|
|
+ Matrix<Scalar, 3, 3> R_i = svd.matrixU() * svd.matrixV().transpose();
|
|
|
+ Matrix<Scalar, 3, 1> t_i = q_i - R_i * p_i;
|
|
|
+
|
|
|
+ // Gamma final transformation matrix
|
|
|
+ Matrix<Scalar, 3, 4> Gamma_i(3, 4);
|
|
|
+ Gamma_i.block(0, 0, 3, 3) = R_i;
|
|
|
+ Gamma_i.block(0, 3, 3, 1) = t_i;
|
|
|
+
|
|
|
+ // Final deformed position
|
|
|
+ Matrix<Scalar, 4, 1> v_i = V_homogeneous.row(i);
|
|
|
+ U.row(i) = Gamma_i * v_i;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <
|
|
|
+ typename DerivedV,
|
|
|
+ typename DerivedF,
|
|
|
+ typename DerivedW,
|
|
|
+ typename DerivedOmega>
|
|
|
+IGL_INLINE void igl::direct_delta_mush_precomputation(
|
|
|
+ const Eigen::MatrixBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixBase<DerivedF> & F,
|
|
|
+ const Eigen::SparseMatrix<DerivedW> & W,
|
|
|
+ const int p,
|
|
|
+ const typename DerivedV::Scalar lambda,
|
|
|
+ const typename DerivedV::Scalar kappa,
|
|
|
+ const typename DerivedV::Scalar alpha,
|
|
|
+ Eigen::PlainObjectBase<DerivedOmega> & Omega)
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+
|
|
|
+ // Shape checks
|
|
|
+ assert(V.cols() == 3 && "V should contain 3D positions.");
|
|
|
+ assert(F.cols() == 3 && "F should contain triangles.");
|
|
|
+ assert(W.rows() == V.rows() && "W.rows() should be equal to V.rows().");
|
|
|
+
|
|
|
+ // Parameter checks
|
|
|
+ assert(p > 0 && "Laplacian iteration p should be positive.");
|
|
|
+ assert(lambda > 0 && "lambda should be positive.");
|
|
|
+ assert(kappa > 0 && kappa < lambda && "kappa should be positive and less than lambda.");
|
|
|
+ assert(alpha >= 0 && alpha < 1 && "alpha should be non-negative and less than 1.");
|
|
|
+
|
|
|
+ typedef typename DerivedV::Scalar Scalar;
|
|
|
+
|
|
|
+ // lambda helper
|
|
|
+ // Given a square matrix, extract the upper triangle (including diagonal) to an array.
|
|
|
+ // E.g. 1 2 3 4
|
|
|
+ // 5 6 7 8 -> [1, 2, 3, 4, 6, 7, 8, 11, 12, 16]
|
|
|
+ // 9 10 11 12 0 1 2 3 4 5 6 7 8 9
|
|
|
+ // 13 14 15 16
|
|
|
+ auto extract_upper_triangle = [](
|
|
|
+ const Matrix<Scalar, Dynamic, Dynamic> & full) -> Matrix<Scalar, Dynamic, 1>
|
|
|
+ {
|
|
|
+ int dims = full.rows();
|
|
|
+ Matrix<Scalar, Dynamic, 1> upper_triangle((dims * (dims + 1)) / 2);
|
|
|
+ int vector_idx = 0;
|
|
|
+ for (int i = 0; i < dims; ++i)
|
|
|
+ {
|
|
|
+ for (int j = i; j < dims; ++j)
|
|
|
+ {
|
|
|
+ upper_triangle(vector_idx) = full(i, j);
|
|
|
+ vector_idx++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return upper_triangle;
|
|
|
+ };
|
|
|
+
|
|
|
+ const int n = V.rows();
|
|
|
+ const int m = W.cols();
|
|
|
+
|
|
|
+ // V_homogeneous: #V by 4, homogeneous version of V
|
|
|
+ // Note:
|
|
|
+ // in the paper, the rest pose vertices are represented in U \in R^{4 \times #V}
|
|
|
+ // Thus the formulae involving U would differ from the paper by a transpose.
|
|
|
+ Matrix<Scalar, Dynamic, 4> V_homogeneous(n, 4);
|
|
|
+ V_homogeneous << V, Matrix<Scalar, Dynamic, 1>::Ones(n);
|
|
|
+
|
|
|
+ // Identity matrix of #V by #V
|
|
|
+ SparseMatrix<Scalar> I(n, n);
|
|
|
+ I.setIdentity();
|
|
|
+
|
|
|
+ // Laplacian matrix of #V by #V
|
|
|
+ // L_bar = L \times D_L^{-1}
|
|
|
+ SparseMatrix<Scalar> L;
|
|
|
+ igl::cotmatrix(V, F, L);
|
|
|
+ L = -L;
|
|
|
+ // Inverse of diagonal matrix = reciprocal elements in diagonal
|
|
|
+ Matrix<Scalar, Dynamic, 1> D_L = L.diagonal();
|
|
|
+ // D_L = D_L.array().pow(-1); // Not using this since not sure if diagonal contains 0
|
|
|
+ for (int i = 0; i < D_L.size(); ++i)
|
|
|
+ {
|
|
|
+ if (D_L(i) != 0)
|
|
|
+ {
|
|
|
+ D_L(i) = 1 / D_L(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ SparseMatrix<Scalar> D_L_inv = D_L.asDiagonal().toDenseMatrix().sparseView();
|
|
|
+ SparseMatrix<Scalar> L_bar = L * D_L_inv;
|
|
|
+
|
|
|
+ // Implicitly and iteratively solve for W'
|
|
|
+ // w'_{ij} = \sum_{k=1}^{n}{C_{ki} w_{kj}} where C = (I + kappa L_bar)^{-p}:
|
|
|
+ // W' = C^T \times W => c^T W_k = W_{k-1} where c = (I + kappa L_bar)
|
|
|
+ // C positive semi-definite => ldlt solver
|
|
|
+ SimplicialLDLT<SparseMatrix<DerivedW>> ldlt_W_prime;
|
|
|
+ SparseMatrix<Scalar> c(I + kappa * L_bar);
|
|
|
+ Matrix<DerivedW, Dynamic, Dynamic> W_prime(W);
|
|
|
+ ldlt_W_prime.compute(c.transpose());
|
|
|
+ for (int iter = 0; iter < p; ++iter)
|
|
|
+ {
|
|
|
+ W_prime = ldlt_W_prime.solve(W_prime);
|
|
|
+ }
|
|
|
+
|
|
|
+ // U_precomputed: #V by 10
|
|
|
+ // Cache u_i^T \dot u_i \in R^{4 x 4} to reduce computation time.
|
|
|
+ Matrix<Scalar, Dynamic, 10> U_precomputed(n, 10);
|
|
|
+ for (int k = 0; k < n; ++k)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, 4, 4> u_full = V_homogeneous.row(k).transpose() * V_homogeneous.row(k);
|
|
|
+ U_precomputed.row(k) = extract_upper_triangle(u_full);
|
|
|
+ }
|
|
|
+
|
|
|
+ // U_prime: #V by #T*10 of u_{jx}
|
|
|
+ // Each column of U_prime (u_{jx}) is the element-wise product of
|
|
|
+ // W_j and U_precomputed_x where j \in {1...m}, x \in {1...10}
|
|
|
+ Matrix<Scalar, Dynamic, Dynamic> U_prime(n, m * 10);
|
|
|
+ for (int j = 0; j < m; ++j)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, Dynamic, 1> w_j = W.col(j);
|
|
|
+ for (int x = 0; x < 10; ++x)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, Dynamic, 1> u_x = U_precomputed.col(x);
|
|
|
+ U_prime.col(10 * j + x) = w_j.array() * u_x.array();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Implicitly and iteratively solve for Psi: #V by #T*10 of \Psi_{ij}s.
|
|
|
+ // Note: Using dense matrices to solve for Psi will cause the program to hang.
|
|
|
+ // The following won't work
|
|
|
+ // Matrix<Scalar, Dynamic, Dynamic> Psi(U_prime);
|
|
|
+ // Matrix<Scalar, Dynamic, Dynamic> b((I + lambda * L_bar).transpose());
|
|
|
+ // for (int iter = 0; iter < p; ++iter)
|
|
|
+ // {
|
|
|
+ // Psi = b.ldlt().solve(Psi); // hangs here
|
|
|
+ // }
|
|
|
+ // Convert to sparse matrices and compute
|
|
|
+ Matrix<Scalar, Dynamic, Dynamic> Psi = U_prime.sparseView();
|
|
|
+ SparseMatrix<Scalar> b = (I + lambda * L_bar).transpose();
|
|
|
+ SimplicialLDLT<SparseMatrix<Scalar>> ldlt_Psi;
|
|
|
+ ldlt_Psi.compute(b);
|
|
|
+ for (int iter = 0; iter < p; ++iter)
|
|
|
+ {
|
|
|
+ Psi = ldlt_Psi.solve(Psi);
|
|
|
+ }
|
|
|
+
|
|
|
+ // P: #V by 10 precomputed upper triangle of
|
|
|
+ // p_i p_i^T , p_i
|
|
|
+ // p_i^T , 1
|
|
|
+ // where p_i = (\sum_{j=1}^{n} Psi_{ij})'s top right 3 by 1 column
|
|
|
+ Matrix<Scalar, Dynamic, 10> P(n, 10);
|
|
|
+ for (int i = 0; i < n; ++i)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, 3, 1> p_i = Matrix<Scalar, 3, 1>::Zero(3);
|
|
|
+ Scalar last = 0;
|
|
|
+ for (int j = 0; j < m; ++j)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, 3, 1> p_i_curr(3);
|
|
|
+ p_i_curr << Psi(i, j * 10 + 3), Psi(i, j * 10 + 6), Psi(i, j * 10 + 8);
|
|
|
+ p_i += p_i_curr;
|
|
|
+ last += Psi(i, j * 10 + 9);
|
|
|
+ }
|
|
|
+ p_i /= last; // normalize
|
|
|
+ Matrix<Scalar, 4, 4> p_matrix(4, 4);
|
|
|
+ p_matrix.block(0, 0, 3, 3) = p_i * p_i.transpose();
|
|
|
+ p_matrix.block(0, 3, 3, 1) = p_i;
|
|
|
+ p_matrix.block(3, 0, 1, 3) = p_i.transpose();
|
|
|
+ p_matrix(3, 3) = 1;
|
|
|
+ P.row(i) = extract_upper_triangle(p_matrix);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Omega
|
|
|
+ Omega.resize(n, m * 10);
|
|
|
+ for (int i = 0; i < n; ++i)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, 10, 1> p_vector = P.row(i);
|
|
|
+ for (int j = 0; j < m; ++j)
|
|
|
+ {
|
|
|
+ Matrix<Scalar, 10, 1> Omega_curr(10);
|
|
|
+ Matrix<Scalar, 10, 1> Psi_curr = Psi.block(i, j * 10, 1, 10).transpose();
|
|
|
+ Omega_curr = (1. - alpha) * Psi_curr + alpha * W_prime.coeff(i, j) * p_vector;
|
|
|
+ Omega.block(i, j * 10, 1, 10) = Omega_curr.transpose();
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef IGL_STATIC_LIBRARY
|
|
|
+
|
|
|
+// Explicit template instantiation
|
|
|
+template void
|
|
|
+igl::direct_delta_mush<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(
|
|
|
+ Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const &,
|
|
|
+ Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const &,
|
|
|
+ std::vector<Eigen::Transform<double, 3, 2, 0>, Eigen::aligned_allocator<Eigen::Transform<double, 3, 2, 0> > > const &,
|
|
|
+ Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const &,
|
|
|
+ Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > &);
|
|
|
+
|
|
|
+template void
|
|
|
+igl::direct_delta_mush_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(
|
|
|
+ Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const &,
|
|
|
+ Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const &,
|
|
|
+ Eigen::SparseMatrix<double, 0, int> const &, int,
|
|
|
+ Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar,
|
|
|
+ Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar,
|
|
|
+ Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar,
|
|
|
+ Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > &);
|
|
|
+
|
|
|
+#endif
|