Browse Source

Merge pull request #1687 from libigl/sparse-mc

sparse marching cubes in core lib
Alec Jacobson 4 years ago
parent
commit
c20c12460d

+ 134 - 0
include/igl/march_cube.cpp

@@ -0,0 +1,134 @@
+// This file is part of libigl, a simple c++ geometry processing library.
+// 
+// Copyright (C) 2021 Alec Jacobson <[email protected]>
+// 
+// This Source Code Form is subject to the terms of the Mozilla Public License 
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
+// obtain one at http://mozilla.org/MPL/2.0/.
+#include "march_cube.h"
+
+// Something bad is happening when I made this a function. Maybe
+// something is not inlining? It ends up 1.25× slower than if the code is pasted
+// into the respective functions in igl::marching_cubes
+//
+// Even if I make it a lambda with no arguments (all capture by reference [&])
+// and call it immediately I get a 1.25× slow-down. 
+// 
+// Maybe keeping it out of a function allows the compiler to optimize with the
+// loop? But then I guess that measn this function is not getting inlined? Or
+// that it's not getting optimized after inlining?
+//
+template <
+  typename DerivedGV,
+  typename Scalar,
+  typename Index,
+  typename DerivedV,
+  typename DerivedF>
+IGL_INLINE void igl::march_cube(
+  const DerivedGV & GV,
+  const Eigen::Matrix<Scalar,8,1> & cS,
+  const Eigen::Matrix<Index,8,1> & cI,
+  const Scalar & isovalue,
+  Eigen::PlainObjectBase<DerivedV> &V,
+  Index & n,
+  Eigen::PlainObjectBase<DerivedF> &F,
+  Index & m,
+  std::unordered_map<int64_t,int> & E2V)
+{
+
+// These consts get stored reasonably
+#include "marching_cubes_tables.h"
+
+  // Seems this is also successfully inlined
+  const auto ij2vertex =
+    [&E2V,&V,&n,&GV]
+      (const Index & i, const Index & j, const Scalar & t)->Index
+  {
+    // Seems this is successfully inlined.
+    const auto ij2key = [](int32_t i,int32_t j)
+    {
+      if(i>j){ std::swap(i,j); }
+      std::int64_t ret = 0;
+      ret |= i;
+      ret |= static_cast<std::int64_t>(j) << 32;
+      return ret;
+    };
+    const auto key = ij2key(i,j);
+    const auto it = E2V.find(key);
+    int v = -1;
+    if(it == E2V.end())
+    {
+      // new vertex
+      if(n==V.rows()){ V.conservativeResize(V.rows()*2+1,V.cols()); }
+      V.row(n) = GV.row(i) + t*(GV.row(j) - GV.row(i));
+      v = n;
+      E2V[key] = v;
+      n++;
+    }else
+    {
+      v = it->second;
+    }
+    return v;
+  };
+
+    int c_flags = 0;
+    for(int c = 0; c < 8; c++)
+    {
+      if(cS(c) > isovalue){ c_flags |= 1<<c; }
+    }
+    //Find which edges are intersected by the surface
+    int e_flags = aiCubeEdgeFlags[c_flags];
+    //If the cube is entirely inside or outside of the surface, then there will be no intersections
+    if(e_flags == 0) { return; }
+    //Find the point of intersection of the surface with each edge
+    //Then find the normal to the surface at those points
+    Eigen::Matrix<Index,12,1> edge_vertices;
+    for(int e = 0; e < 12; e++)
+    {
+#ifndef NDEBUG
+      edge_vertices[e] = -1;
+#endif
+      //if there is an intersection on this edge
+      if(e_flags & (1<<e))
+      {
+        // find crossing point assuming linear interpolation along edges
+        const Scalar & a = cS(a2eConnection[e][0]);
+        const Scalar & b = cS(a2eConnection[e][1]);
+        Scalar t;
+        {
+          const Scalar delta = b-a;
+          if(delta == 0) { t = 0.5; }
+          t = (isovalue - a)/delta;
+        };
+        // record global index into local table
+        edge_vertices[e] = 
+          ij2vertex(cI(a2eConnection[e][0]),cI(a2eConnection[e][1]),t);
+        assert(edge_vertices[e] >= 0);
+        assert(edge_vertices[e] < n);
+      }
+    }
+    // Insert the triangles that were found.  There can be up to five per cube
+    for(int f = 0; f < 5; f++)
+    {
+      if(a2fConnectionTable[c_flags][3*f] < 0) break;
+      if(m==F.rows()){ F.conservativeResize(F.rows()*2+1,F.cols()); }
+      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+0]]>=0);
+      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+1]]>=0);
+      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+2]]>=0);
+      F.row(m) <<
+        edge_vertices[a2fConnectionTable[c_flags][3*f+0]],
+        edge_vertices[a2fConnectionTable[c_flags][3*f+1]],
+        edge_vertices[a2fConnectionTable[c_flags][3*f+2]];
+      m++;
+    }
+}
+
+
+#ifdef IGL_STATIC_LIBRARY
+// Explicit template instantiation
+template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, double, long, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, 8, 1, 0, 8, 1> const&, Eigen::Matrix<long, 8, 1, 0, 8, 1> const&, double const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, long&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, long&, std::unordered_map<int64_t, int, std::hash<int64_t>, std::equal_to<int64_t>, std::allocator<std::pair<int64_t const, int> > >&);
+template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, double, unsigned int, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, 8, 1, 0, 8, 1> const&, Eigen::Matrix<unsigned int, 8, 1, 0, 8, 1> const&, double const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, unsigned int&, std::unordered_map<int64_t, int, std::hash<int64_t>, std::equal_to<int64_t>, std::allocator<std::pair<int64_t const, int> > >&);
+#ifdef WIN32
+template void __cdecl igl::march_cube<class Eigen::MatrixBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> >,double,__int64,class Eigen::Matrix<double,-1,-1,0,-1,-1>,class Eigen::Matrix<int,-1,-1,0,-1,-1> >(class Eigen::MatrixBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> > const &,class Eigen::Matrix<double,8,1,0,8,1> const &,class Eigen::Matrix<__int64,8,1,0,8,1> const &,double const &,class Eigen::PlainObjectBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> > &,__int64 &,class Eigen::PlainObjectBase<class Eigen::Matrix<int,-1,-1,0,-1,-1> > &,__int64 &,class std::unordered_map<__int64,int,struct std::hash<__int64>,struct std::equal_to<__int64>,class std::allocator<struct std::pair<__int64 const ,int> > > &);
+#endif
+#endif 

+ 52 - 0
include/igl/march_cube.h

@@ -0,0 +1,52 @@
+// This file is part of libigl, a simple c++ geometry processing library.
+// 
+// Copyright (C) 2021 Alec Jacobson <[email protected]>
+// 
+// This Source Code Form is subject to the terms of the Mozilla Public License 
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
+// obtain one at http://mozilla.org/MPL/2.0/.
+#ifndef IGL_MARCH_CUBE_H
+#define IGL_MARCH_CUBE_H
+#include "igl_inline.h"
+#include <Eigen/Core>
+#include <unordered_map>
+namespace igl
+{
+  // Process a single cube of a marching cubes grid.
+  //
+  // Inputs:
+  //   GV  #GV by 3 list of grid vertex positions
+  //   cS  list of 8 scalar field values at grid corners
+  //   cI  list of 8 indices of corners into rows of GV
+  //   isovalue  level-set value being extracted (often 0)
+  //   V  #V by 3 current list of output mesh vertex positions
+  //   n  current number of mesh vertices (i.e., occupied rows in V)
+  //   F  #F by 3 current list of output mesh triangle indices into rows of V
+  //   m  current number of mesh triangles (i.e., occupied rows in F)
+  //   E2V  current edge (GV_i,GV_j) to vertex (V_k) map
+  // Side-effects: V,n,F,m,E2V are updated to contain new vertices and faces of
+  // any constructed mesh elements
+  //
+  template <
+    typename DerivedGV,
+    typename Scalar,
+    typename Index,
+    typename DerivedV,
+    typename DerivedF>
+  IGL_INLINE void march_cube(
+    const DerivedGV & GV,
+    const Eigen::Matrix<Scalar,8,1> & cS,
+    const Eigen::Matrix<Index,8,1> & cI,
+    const Scalar & isovalue,
+    Eigen::PlainObjectBase<DerivedV> &V,
+    Index & n,
+    Eigen::PlainObjectBase<DerivedF> &F,
+    Index & m,
+    std::unordered_map<int64_t,int> & E2V);
+}
+
+#ifndef IGL_STATIC_LIBRARY
+#  include "march_cube.cpp"
+#endif
+
+#endif

+ 60 - 377
include/igl/marching_cubes.cpp

@@ -1,9 +1,18 @@
+// This file is part of libigl, a simple c++ geometry processing library.
+// 
+// Copyright (C) 2021 Alec Jacobson <[email protected]>
+// 
+// This Source Code Form is subject to the terms of the Mozilla Public License 
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
+// obtain one at http://mozilla.org/MPL/2.0/.
 #include "marching_cubes.h"
+#include "march_cube.h"
 
 // Adapted from public domain code at
 // http://paulbourke.net/geometry/polygonise/marchingsource.cpp
 
 #include <unordered_map>
+#include <iostream>
 
 template <typename DerivedS, typename DerivedGV, typename DerivedV, typename DerivedF>
 IGL_INLINE void igl::marching_cubes(
@@ -17,355 +26,26 @@ IGL_INLINE void igl::marching_cubes(
     Eigen::PlainObjectBase<DerivedF> &F)
 {
   typedef typename DerivedS::Scalar Scalar;
-  typedef typename DerivedF::Scalar Index;
+  typedef unsigned Index;
   // use same order as a2fVertexOffset
   const unsigned ioffset[8] = {0,1,1+nx,nx,nx*ny,1+nx*ny,1+nx+nx*ny,nx+nx*ny};
-  const int aiCubeEdgeFlags[256]=
-  {
-    0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 
-    0x190, 0x099, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 
-    0x230, 0x339, 0x033, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 
-    0x3a0, 0x2a9, 0x1a3, 0x0aa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 
-    0x460, 0x569, 0x663, 0x76a, 0x066, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 
-    0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0x0ff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 
-    0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x055, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 
-    0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0x0cc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 
-    0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0x0cc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 
-    0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x055, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 
-    0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0x0ff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 
-    0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x066, 0x76a, 0x663, 0x569, 0x460, 
-    0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0x0aa, 0x1a3, 0x2a9, 0x3a0, 
-    0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x033, 0x339, 0x230, 
-    0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x099, 0x190, 
-    0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000
-  };
-  //a2eConnection lists the index of the endpoint vertices for each of the 12 edges of the cube
-  const int a2eConnection[12][2] = 
-  {
-    {0,1}, {1,2}, {2,3}, {3,0},
-    {4,5}, {5,6}, {6,7}, {7,4},
-    {0,4}, {1,5}, {2,6}, {3,7}
-  };
-  //  For each of the possible vertex states listed in aiCubeEdgeFlags there is a specific triangulation
-  //  of the edge intersection points.  a2fConnectionTable lists all of them in the form of
-  //  0-5 edge triples with the list terminated by the invalid value -1.
-  //  For example: a2fConnectionTable[3] list the 2 triangles formed when corner[0] 
-  //  and corner[1] are inside of the surface, but the rest of the cube is not.
-  //
-  //  I found this table in an example program someone wrote long ago.  It was probably generated by hand
-  int a2fConnectionTable[256][16] =  
-  {
-    {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
-    {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
-    {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
-    {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
-    {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
-    {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
-    {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
-    {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
-    {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
-    {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
-    {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
-    {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
-    {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
-    {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
-    {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
-    {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
-    {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
-    {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
-    {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
-    {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
-    {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
-    {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
-    {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
-    {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
-    {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
-    {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
-    {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
-    {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
-    {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
-    {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
-    {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
-    {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
-    {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
-    {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
-    {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
-    {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
-    {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
-    {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
-    {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
-    {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
-    {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
-    {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
-    {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
-    {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
-    {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
-    {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
-    {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
-    {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
-    {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
-    {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
-    {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
-    {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
-    {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
-    {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
-    {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
-    {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
-    {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
-    {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
-    {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
-    {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
-    {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
-    {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
-    {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
-    {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
-    {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
-    {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
-    {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
-    {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
-    {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
-    {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
-    {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
-    {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
-    {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
-    {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
-    {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
-    {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
-    {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
-    {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
-    {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
-    {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
-    {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
-    {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
-    {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
-    {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
-    {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
-    {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
-    {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
-    {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
-    {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
-    {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
-    {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
-    {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
-    {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
-    {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
-    {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
-    {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
-    {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
-    {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
-    {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
-    {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
-    {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
-    {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
-    {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
-    {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
-    {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
-    {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
-    {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
-    {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
-    {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
-    {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
-    {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
-    {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
-    {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
-    {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
-    {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
-    {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
-    {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
-    {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
-    {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
-    {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
-    {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
-    {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
-    {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
-    {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
-    {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
-    {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
-    {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
-    {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
-    {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
-    {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
-    {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
-    {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
-    {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
-    {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
-    {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
-    {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
-    {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
-    {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
-    {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
-    {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
-    {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
-    {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
-    {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
-    {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
-    {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
-    {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
-    {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
-    {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
-    {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
-    {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
-    {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
-    {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
-    {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
-    {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
-    {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
-    {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
-    {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
-    {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
-    {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
-    {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
-    {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
-    {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
-    {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
-    {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
-    {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
-    {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
-    {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
-    {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
-    {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
-    {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
-    {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
-    {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
-    {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
-    {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
-    {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
-    {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
-    {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
-    {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
-    {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
-  };
 
 
   std::unordered_map<int64_t,int> E2V;
   V.resize(std::pow(nx*ny*nz,2./3.),3);
   F.resize(std::pow(nx*ny*nz,2./3.),3);
-  int n = 0;
-  int m = 0;
+  Index n = 0;
+  Index m = 0;
 
   const auto xyz2i = [&nx,&ny,&nz]
     (const int & x, const int & y, const int & z)->unsigned
   {
     return x+nx*(y+ny*(z));
   };
-  const auto ij2key = [](int32_t i,int32_t j)
-  {
-    if(i>j){ std::swap(i,j); }
-    std::int64_t ret = 0;
-    ret |= i;
-    ret |= static_cast<std::int64_t>(j) << 32;
-    return ret;
-  };
-  const auto ij2vertex = [&E2V,&V,&n,&GV,&ij2key]
-    (const unsigned & i, const unsigned & j, const Scalar & t)
-  {
-    const auto key = ij2key(i,j);
-    const auto it = E2V.find(key);
-    int v = -1;
-    if(it == E2V.end())
-    {
-      // new vertex
-      if(n==V.rows()){ V.conservativeResize(V.rows()*2+1,V.cols()); }
-      V.row(n) = GV.row(i) + t*(GV.row(j) - GV.row(i));
-      v = n;
-      E2V[key] = v;
-      n++;
-    }else
-    {
-      v = it->second;
-    }
-    return v;
-  };
-  //fGetOffset finds the approximate point of intersection of the surface
-  // between two points with the values fValue1 and fValue2
-  const auto inv_lerp = [&isovalue](const Scalar & a, const Scalar & b)->Scalar
-  {
-    const Scalar delta = b-a;
-    if(delta == 0) { return 0.5; }
-    return (isovalue - a)/delta;
-  };
   const auto cube = 
     [
-      &S,&V,&n,&F,&m,&isovalue,
-      &E2V,&ij2vertex,&xyz2i,&inv_lerp,&ioffset,
-      &aiCubeEdgeFlags,&a2eConnection,a2fConnectionTable
+      &GV,&S,&V,&n,&F,&m,&isovalue,
+      &E2V,&xyz2i,&ioffset
     ]
     (const int x, const int y, const int z)
   {
@@ -373,60 +53,22 @@ IGL_INLINE void igl::marching_cubes(
 
     //Make a local copy of the values at the cube's corners
     static Eigen::Matrix<Scalar,8,1> cS;
-    static Eigen::Matrix<unsigned,8,1> cI;
+    static Eigen::Matrix<Index,8,1> cI;
     //Find which vertices are inside of the surface and which are outside
-    int c_flags = 0;
     for(int c = 0; c < 8; c++)
     {
       const unsigned ic = i + ioffset[c];
       cI(c) = ic;
       cS(c) = S(ic);
-      if(cS(c) > isovalue){ c_flags |= 1<<c; }
-    }
-    //Find which edges are intersected by the surface
-    int e_flags = aiCubeEdgeFlags[c_flags];
-    //If the cube is entirely inside or outside of the surface, then there will be no intersections
-    if(e_flags == 0) { return; }
-    //Find the point of intersection of the surface with each edge
-    //Then find the normal to the surface at those points
-    Eigen::Matrix<Index,12,1> edge_vertices;
-    for(int e = 0; e < 12; e++)
-    {
-#ifndef NDEBUG
-      edge_vertices[e] = -1;
-#endif
-      //if there is an intersection on this edge
-      if(e_flags & (1<<e))
-      {
-        // find crossing point assuming linear interpolation along edges
-        const Scalar t = 
-          inv_lerp(cS(a2eConnection[e][0]),cS(a2eConnection[e][1]));
-        // record global index into local table
-        edge_vertices[e] = 
-          ij2vertex(cI(a2eConnection[e][0]),cI(a2eConnection[e][1]),t);
-        assert(edge_vertices[e] >= 0);
-        assert(edge_vertices[e] < n);
-      }
-    }
-    // Insert the triangles that were found.  There can be up to five per cube
-    for(int f = 0; f < 5; f++)
-    {
-      if(a2fConnectionTable[c_flags][3*f] < 0) break;
-      if(m==F.rows()){ F.conservativeResize(F.rows()*2+1,F.cols()); }
-      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+0]]>=0);
-      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+1]]>=0);
-      assert(edge_vertices[a2fConnectionTable[c_flags][3*f+2]]>=0);
-      F.row(m) <<
-        edge_vertices[a2fConnectionTable[c_flags][3*f+0]],
-        edge_vertices[a2fConnectionTable[c_flags][3*f+1]],
-        edge_vertices[a2fConnectionTable[c_flags][3*f+2]];
-      m++;
     }
+
+  march_cube(GV,cS,cI,isovalue,V,n,F,m,E2V);
+
   };
 
   // march over all cubes (loop order chosen to match memory)
   //
-  // Should be possible to parallelize safely if threads a "well separated".
+  // Should be possible to parallelize safely if threads are "well separated".
   // Like red-black Gauss Seidel. Probably each thread need's their own E2V,V,F,
   // and then merge at the end. Annoying part are the edges lying on the
   // interface between chunks.
@@ -444,8 +86,49 @@ IGL_INLINE void igl::marching_cubes(
   F.conservativeResize(m,3);
 }
 
+template <
+  typename DerivedS, 
+  typename DerivedGV, 
+  typename DerivedGI, 
+  typename DerivedV, 
+  typename DerivedF>
+IGL_INLINE void igl::marching_cubes(
+  const Eigen::MatrixBase<DerivedS> & S,
+  const Eigen::MatrixBase<DerivedGV> & GV,
+  const Eigen::MatrixBase<DerivedGI> & GI,
+  const typename DerivedS::Scalar isovalue,
+  Eigen::PlainObjectBase<DerivedV> &V,
+  Eigen::PlainObjectBase<DerivedF> &F)
+{
+  typedef Eigen::Index Index;
+  typedef typename DerivedV::Scalar Scalar;
+
+  std::unordered_map<int64_t,int> E2V;
+  V.resize(4*GV.rows(),3);
+  F.resize(4*GV.rows(),3);
+  Index n = 0;
+  Index m = 0;
+
+  // march over cubes
+  for(Index c = 0;c<GI.rows();c++)
+  {
+    //Make a local copy of the values at the cube's corners
+    static Eigen::Matrix<Scalar,8,1> cS;
+    static Eigen::Matrix<Index,8,1> cI;
+    for(int v = 0; v < 8; v++)
+    {
+      cI(v) = GI(c,v);
+      cS(v) = S(GI(c,v));
+    }
+    march_cube(GV,cS,cI,isovalue,V,n,F,m,E2V);
+  }
+  V.conservativeResize(n,3);
+  F.conservativeResize(m,3);
+}
+
 #ifdef IGL_STATIC_LIBRARY
 // Explicit template instantiation
 // generated by autoexplicit.sh
 template void igl::marching_cubes<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, unsigned int, unsigned int, unsigned int, Eigen::Matrix<double, -1, 1, 0, -1, 1>::Scalar, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
+template void igl::marching_cubes<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, -1, 1, 0, -1, 1>::Scalar, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
 #endif

+ 14 - 1
include/igl/marching_cubes.h

@@ -1,6 +1,6 @@
 // This file is part of libigl, a simple c++ geometry processing library.
 //
-// Copyright (C) 2014 Alec Jacobson <[email protected]>
+// Copyright (C) 2020 Alec Jacobson <[email protected]>
 //
 // This Source Code Form is subject to the terms of the Mozilla Public License
 // v. 2.0. If a copy of the MPL was not distributed with this file, You can
@@ -43,6 +43,19 @@ namespace igl
     const typename DerivedS::Scalar isovalue,
     Eigen::PlainObjectBase<DerivedV> &V,
     Eigen::PlainObjectBase<DerivedF> &F);
+  template <
+    typename DerivedS, 
+    typename DerivedGV, 
+    typename DerivedGI, 
+    typename DerivedV, 
+    typename DerivedF>
+  IGL_INLINE void marching_cubes(
+    const Eigen::MatrixBase<DerivedS> & S,
+    const Eigen::MatrixBase<DerivedGV> & GV,
+    const Eigen::MatrixBase<DerivedGI> & GI,
+    const typename DerivedS::Scalar isovalue,
+    Eigen::PlainObjectBase<DerivedV> &V,
+    Eigen::PlainObjectBase<DerivedF> &F);
 }
 
 #ifndef IGL_STATIC_LIBRARY

+ 293 - 0
include/igl/marching_cubes_tables.h

@@ -0,0 +1,293 @@
+  const int aiCubeEdgeFlags[256]=
+  {
+    0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 
+    0x190, 0x099, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 
+    0x230, 0x339, 0x033, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 
+    0x3a0, 0x2a9, 0x1a3, 0x0aa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 
+    0x460, 0x569, 0x663, 0x76a, 0x066, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 
+    0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0x0ff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 
+    0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x055, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 
+    0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0x0cc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 
+    0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0x0cc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 
+    0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x055, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 
+    0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0x0ff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 
+    0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x066, 0x76a, 0x663, 0x569, 0x460, 
+    0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0x0aa, 0x1a3, 0x2a9, 0x3a0, 
+    0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x033, 0x339, 0x230, 
+    0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x099, 0x190, 
+    0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000
+  };
+  //a2eConnection lists the index of the endpoint vertices for each of the 12 edges of the cube
+  const int a2eConnection[12][2] = 
+  {
+    {0,1}, {1,2}, {2,3}, {3,0},
+    {4,5}, {5,6}, {6,7}, {7,4},
+    {0,4}, {1,5}, {2,6}, {3,7}
+  };
+  //  For each of the possible vertex states listed in aiCubeEdgeFlags there is a specific triangulation
+  //  of the edge intersection points.  a2fConnectionTable lists all of them in the form of
+  //  0-5 edge triples with the list terminated by the invalid value -1.
+  //  For example: a2fConnectionTable[3] list the 2 triangles formed when corner[0] 
+  //  and corner[1] are inside of the surface, but the rest of the cube is not.
+  //
+  //  I found this table in an example program someone wrote long ago.  It was probably generated by hand
+  const int a2fConnectionTable[256][16] =  
+  {
+    {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
+    {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
+    {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
+    {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
+    {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
+    {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
+    {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
+    {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
+    {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
+    {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
+    {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
+    {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
+    {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
+    {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
+    {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
+    {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
+    {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
+    {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
+    {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
+    {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
+    {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
+    {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
+    {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
+    {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
+    {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
+    {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
+    {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
+    {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
+    {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
+    {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
+    {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
+    {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
+    {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
+    {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
+    {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
+    {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
+    {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
+    {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
+    {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
+    {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
+    {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
+    {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
+    {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
+    {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
+    {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
+    {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
+    {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
+    {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
+    {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
+    {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
+    {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
+    {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
+    {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
+    {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
+    {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
+    {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
+    {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
+    {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
+    {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
+    {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
+    {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
+    {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
+    {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
+    {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
+    {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
+    {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
+    {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
+    {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
+    {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
+    {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
+    {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
+    {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
+    {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
+    {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
+    {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
+    {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
+    {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
+    {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
+    {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
+    {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
+    {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
+    {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
+    {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
+    {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
+    {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
+    {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
+    {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
+    {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
+    {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
+    {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
+    {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
+    {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
+    {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
+    {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
+    {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
+    {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
+    {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
+    {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
+    {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
+    {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
+    {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
+    {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
+    {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
+    {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
+    {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
+    {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
+    {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
+    {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
+    {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
+    {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
+    {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
+    {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
+    {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
+    {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
+    {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
+    {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
+    {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
+    {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
+    {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
+    {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
+    {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
+    {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
+    {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
+    {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
+    {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
+    {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
+    {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
+    {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
+    {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
+    {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
+    {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
+    {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
+    {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
+    {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
+    {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
+    {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
+    {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
+    {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
+    {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
+    {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
+    {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
+    {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
+    {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
+    {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
+    {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
+    {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
+    {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
+    {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
+    {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
+    {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
+    {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
+    {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
+    {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
+    {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
+    {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
+    {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
+    {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
+    {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
+    {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
+    {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
+    {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
+    {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
+    {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
+    {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
+    {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
+    {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
+    {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
+    {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
+    {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
+    {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
+    {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
+    {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
+    {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
+    {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
+    {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
+    {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
+    {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
+    {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
+    {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
+  };
+

+ 7 - 22
tutorial/705_MarchingCubes/main.cpp

@@ -1,6 +1,7 @@
 #include <igl/marching_cubes.h>
 #include <igl/signed_distance.h>
 #include <igl/read_triangle_mesh.h>
+#include <igl/voxel_grid.h>
 #include <igl/opengl/glfw/Viewer.h>
 #include <Eigen/Core>
 #include <iostream>
@@ -17,30 +18,14 @@ int main(int argc, char * argv[])
   // Read in inputs as double precision floating point meshes
   read_triangle_mesh(
       TUTORIAL_SHARED_PATH "/armadillo.obj",V,F);
+  cout<<"Creating grid..."<<endl;
   // number of vertices on the largest side
-  const int s = 50;
-  const RowVector3d Vmin = V.colwise().minCoeff();
-  const RowVector3d Vmax = V.colwise().maxCoeff();
-  const double h = (Vmax-Vmin).maxCoeff()/(double)s;
-  const RowVector3i res = (s*((Vmax-Vmin)/(Vmax-Vmin).maxCoeff())).cast<int>();
+  const int s = 100;
   // create grid
-  cout<<"Creating grid..."<<endl;
-  MatrixXd GV(res(0)*res(1)*res(2),3);
-  for(int zi = 0;zi<res(2);zi++)
-  {
-    const auto lerp = [&](const int di, const int d)->double
-      {return Vmin(d)+(double)di/(double)(res(d)-1)*(Vmax(d)-Vmin(d));};
-    const double z = lerp(zi,2);
-    for(int yi = 0;yi<res(1);yi++)
-    {
-      const double y = lerp(yi,1);
-      for(int xi = 0;xi<res(0);xi++)
-      {
-        const double x = lerp(xi,0);
-        GV.row(xi+res(0)*(yi + res(1)*zi)) = RowVector3d(x,y,z);
-      }
-    }
-  }
+  MatrixXd GV;
+  Eigen::RowVector3i res;
+  igl::voxel_grid(V,0,s,1,GV,res);
+ 
   // compute values
   cout<<"Computing distances..."<<endl;
   VectorXd S,B;

+ 14 - 12
tutorial/715_MeshImplicitFunction/main.cpp

@@ -1,4 +1,4 @@
-#include <igl/copyleft/marching_cubes.h>
+#include <igl/marching_cubes.h>
 #include <igl/sparse_voxel_grid.h>
 #include <igl/opengl/glfw/Viewer.h>
 
@@ -11,35 +11,37 @@ int main(int argc, char * argv[])
 {
   // An implicit function which is zero on the surface of a sphere centered at the origin with radius 1
   // This function is negative inside the surface and positive outside the surface
-  std::function<double(const Eigen::RowVector3d&)> scalar_func = [](const Eigen::RowVector3d& pt) -> double {
-    return pt.norm() - 1.0;
+  std::function<double(const Eigen::RowVector3d&)> scalar_func = 
+    [](const Eigen::RowVector3d& x) -> double {
+    const double R = x.norm();
+    const double s = atan2(x.head(2).norm(),x(2));
+    const double p = atan2(x(1),x(0));
+    return pow(sin(s),2.)*(pow(cos(12.*s),3.)*0.1+pow(sin(6.*p),2)*0.2)+(R-0.5);
+    //return R-0.5;
   };
 
-  // We know that the point (0, 0, 1) lies on the implicit surface
-  Eigen::RowVector3d p0(0., 0., 1.);
+  // We know that the point (0, 0, 0.5) lies on the implicit surface
+  Eigen::RowVector3d p0(0., 0., 0.5);
 
-  // Construct a sparse voxel grid whose cubes have edge length eps = 0.1.
+  // Construct a sparse voxel grid whose cubes have edge length eps
   // The cubes will form a thin shell around the implicit surface
-  const double eps = 0.1;
+  const double eps = 0.01;
 
   // CS will hold one scalar value at each cube vertex corresponding
   // the value of the implicit at that vertex
   Eigen::VectorXd CS;
-
   // CV will hold the positions of the corners of the sparse voxel grid
   Eigen::MatrixXd CV;
-
   // CI is a #cubes x 8 matrix of indices where each row contains the
   // indices into CV of the 8 corners of a cube
   Eigen::MatrixXi CI;
-
   // Construct the voxel grid, populating CS, CV, and CI
-  igl::sparse_voxel_grid(p0, scalar_func, eps, 1024 /*expected_number_of_cubes*/, CS, CV, CI);
+  igl::sparse_voxel_grid(p0, scalar_func, eps, 200000/*expected_number_of_cubes*/, CS, CV, CI);
 
   // Given the sparse voxel grid, use Marching Cubes to construct a triangle mesh of the surface
   Eigen::MatrixXi F;
   Eigen::MatrixXd V;
-  igl::copyleft::marching_cubes(CS, CV, CI, V, F);
+  igl::marching_cubes(CS, CV, CI, 0, V, F);
 
   // Draw the meshed implicit surface
   igl::opengl::glfw::Viewer viewer;