|
|
@@ -78,9 +78,151 @@ IGL_INLINE void igl::cotmatrix(
|
|
|
L.setFromTriplets(IJV.begin(),IJV.end());
|
|
|
}
|
|
|
|
|
|
+#include "massmatrix.h"
|
|
|
+#include "pinv.h"
|
|
|
+#include "cotmatrix_entries.h"
|
|
|
+#include "diag.h"
|
|
|
+#include "massmatrix.h"
|
|
|
+#include <Eigen/Geometry>
|
|
|
+
|
|
|
+template <
|
|
|
+ typename DerivedV,
|
|
|
+ typename DerivedI,
|
|
|
+ typename DerivedC,
|
|
|
+ typename Scalar>
|
|
|
+IGL_INLINE void igl::cotmatrix(
|
|
|
+ const Eigen::MatrixBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixBase<DerivedI> & I,
|
|
|
+ const Eigen::MatrixBase<DerivedC> & C,
|
|
|
+ Eigen::SparseMatrix<Scalar>& L,
|
|
|
+ Eigen::SparseMatrix<Scalar>& M,
|
|
|
+ Eigen::SparseMatrix<Scalar>& P)
|
|
|
+{
|
|
|
+ typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
|
|
|
+ typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> MatrixXS;
|
|
|
+ typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> VectorXS;
|
|
|
+ // number of vertices
|
|
|
+ const int n = V.rows();
|
|
|
+ // number of polyfaces
|
|
|
+ const int m = C.size()-1;
|
|
|
+ assert(V.cols() == 2 || V.cols() == 3);
|
|
|
+ std::vector<Eigen::Triplet<Scalar> > Lfijv;
|
|
|
+ std::vector<Eigen::Triplet<Scalar> > Mfijv;
|
|
|
+ std::vector<Eigen::Triplet<Scalar> > Pijv;
|
|
|
+ // loop over vertices; set identity for original vertices
|
|
|
+ for(int i = 0;i<V.rows();i++) { Pijv.emplace_back(i,i,1); }
|
|
|
+ // loop over faces
|
|
|
+ for(int p = 0;p<C.size()-1;p++)
|
|
|
+ {
|
|
|
+ // number of faces/vertices in this simple polygon
|
|
|
+ const int np = C(p+1)-C(p);
|
|
|
+ // Working "local" list of vertices; last vertex is new one
|
|
|
+ // this needs to have 3 columns so Eigen doesn't complain about cross
|
|
|
+ // products below.
|
|
|
+ Eigen::Matrix<Scalar,Eigen::Dynamic,3> X = decltype(X)::Zero(np+1,3);
|
|
|
+ for(int i = 0;i<np;i++){ X.row(i).head(V.cols()) = V.row(I(C(p)+i)); };
|
|
|
+ // determine weights definig position of inserted vertex
|
|
|
+ {
|
|
|
+ MatrixXS A = decltype(A)::Zero(np+1,np);
|
|
|
+ // My equation (38) would be A w = b.
|
|
|
+ VectorXS b = decltype(b)::Zero(np+1);
|
|
|
+ for(int k = 0;k<np;k++)
|
|
|
+ {
|
|
|
+ const RowVector3S Xkp1mk = X.row((k+1)%np)-X.row(k);
|
|
|
+ const RowVector3S Xkp1mkck = Xkp1mk.cross(X.row(k));
|
|
|
+ for(int i = 0;i<np;i++)
|
|
|
+ {
|
|
|
+ b(i) -= 2.*(X.row(i).cross(Xkp1mk)).dot(Xkp1mkck);
|
|
|
+ for(int j = 0;j<np;j++)
|
|
|
+ {
|
|
|
+ A(i,j) += 2.*(X.row(j).cross(Xkp1mk)).dot(X.row(i).cross(Xkp1mk));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ A.row(np).setConstant(1);
|
|
|
+ b(np) = 1;
|
|
|
+ const VectorXS w =
|
|
|
+ Eigen::CompleteOrthogonalDecomposition<Eigen::MatrixXd>(A).solve(b);
|
|
|
+ X.row(np) = w.transpose()*X.topRows(np);
|
|
|
+ // scatter w into new row of P
|
|
|
+ for(int i = 0;i<np;i++) { Pijv.emplace_back(n+p,I(C(p)+i),w(i)); }
|
|
|
+ }
|
|
|
+ // "local" fan of faces. These could be statically cached, but this will
|
|
|
+ // not be the bottleneck.
|
|
|
+ Eigen::MatrixXi F(np,3);
|
|
|
+ for(int i = 0;i<np;i++)
|
|
|
+ {
|
|
|
+ F(i,0) = i;
|
|
|
+ F(i,1) = (i+1)%np;
|
|
|
+ F(i,2) = np;
|
|
|
+ }
|
|
|
+ // Cotangent contributions
|
|
|
+ MatrixXS K;
|
|
|
+ igl::cotmatrix_entries(X,F,K);
|
|
|
+ // Massmatrix entried
|
|
|
+ VectorXS Mp;
|
|
|
+ {
|
|
|
+ Eigen::SparseMatrix<Scalar> M;
|
|
|
+ igl::massmatrix(X,F,igl::MASSMATRIX_TYPE_DEFAULT,M);
|
|
|
+ Mp = M.diagonal();
|
|
|
+ }
|
|
|
+ // Scatter into fine Laplacian and mass matrices
|
|
|
+ const auto J = [&n,&np,&p,&I,&C](int i)->int{return i==np?n+p:I(C(p)+i);};
|
|
|
+ // Should just build Mf as a vector...
|
|
|
+ for(int i = 0;i<np+1;i++) { Mfijv.emplace_back(J(i),J(i),Mp(i)); }
|
|
|
+ // loop over faces
|
|
|
+ for(int f = 0;f<np;f++)
|
|
|
+ {
|
|
|
+ for(int c = 0;c<3;c++)
|
|
|
+ {
|
|
|
+ const int i = F(f,(c+1)%3);
|
|
|
+ const int j = F(f,(c+2)%3);
|
|
|
+ // symmetric off-diagonal
|
|
|
+ Lfijv.emplace_back(J(i),J(j),K(f,c));
|
|
|
+ Lfijv.emplace_back(J(j),J(i),K(f,c));
|
|
|
+ // diagonal
|
|
|
+ Lfijv.emplace_back(J(i),J(i),-K(f,c));
|
|
|
+ Lfijv.emplace_back(J(j),J(j),-K(f,c));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ P.resize(n+m,n);
|
|
|
+ P.setFromTriplets(Pijv.begin(),Pijv.end());
|
|
|
+ Eigen::SparseMatrix<Scalar> Lf(n+m,n+m);
|
|
|
+ Lf.setFromTriplets(Lfijv.begin(),Lfijv.end());
|
|
|
+ Eigen::SparseMatrix<Scalar> Mf(n+m,n+m);
|
|
|
+ Mf.setFromTriplets(Mfijv.begin(),Mfijv.end());
|
|
|
+ L = P.transpose() * Lf * P;
|
|
|
+ // "unlumped" M
|
|
|
+ const Eigen::SparseMatrix<Scalar> PTMP = P.transpose() * Mf * P;
|
|
|
+ // Lump M
|
|
|
+ const VectorXS Mdiag = PTMP * VectorXS::Ones(n,1);
|
|
|
+ igl::diag(Mdiag,M);
|
|
|
+
|
|
|
+ MatrixXS Vf = P*V;
|
|
|
+ Eigen::MatrixXi Ff(I.size(),3);
|
|
|
+ {
|
|
|
+ int f = 0;
|
|
|
+ for(int p = 0;p<C.size()-1;p++)
|
|
|
+ {
|
|
|
+ const int np = C(p+1)-C(p);
|
|
|
+ for(int c = 0;c<np;c++)
|
|
|
+ {
|
|
|
+ Ff(f,0) = I(C(p)+c);
|
|
|
+ Ff(f,1) = I(C(p)+(c+1)%np);
|
|
|
+ Ff(f,2) = V.rows()+p;
|
|
|
+ f++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert(f == Ff.rows());
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
|
// Explicit template instantiation
|
|
|
// generated by autoexplicit.sh
|
|
|
+template void igl::cotmatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int>&, Eigen::SparseMatrix<double, 0, int>&, Eigen::SparseMatrix<double, 0, int>&);
|
|
|
+// generated by autoexplicit.sh
|
|
|
template void igl::cotmatrix<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&);
|
|
|
template void igl::cotmatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 4, 0, -1, 4>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 4, 0, -1, 4> > const&, Eigen::SparseMatrix<double, 0, int>&);
|
|
|
template void igl::cotmatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::SparseMatrix<double, 0, int>&);
|