ViewerData.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2014 Daniele Panozzo <[email protected]>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "ViewerData.h"
  9. #include "ViewerCore.h"
  10. #include "../per_face_normals.h"
  11. #include "../material_colors.h"
  12. #include "../per_vertex_normals.h"
  13. // Really? Just for GL_NEAREST?
  14. #include "gl.h"
  15. #include <iostream>
  16. IGL_INLINE igl::opengl::ViewerData::ViewerData()
  17. : dirty(MeshGL::DIRTY_ALL),
  18. show_faces (~unsigned(0)),
  19. show_lines (~unsigned(0)),
  20. face_based (false),
  21. double_sided (false),
  22. invert_normals (false),
  23. show_overlay (~unsigned(0)),
  24. show_overlay_depth(~unsigned(0)),
  25. show_vertid (false),
  26. show_faceid (false),
  27. show_labels (false),
  28. show_texture (false),
  29. use_matcap (false),
  30. point_size(30),
  31. line_width(0.5f),
  32. line_color(0,0,0,1),
  33. label_color(0,0,0.04,1),
  34. shininess(35.0f),
  35. id(-1),
  36. is_visible (~unsigned(0))
  37. {
  38. clear();
  39. };
  40. IGL_INLINE void igl::opengl::ViewerData::set_face_based(bool newvalue)
  41. {
  42. if (face_based != newvalue)
  43. {
  44. face_based = newvalue;
  45. dirty = MeshGL::DIRTY_ALL;
  46. }
  47. }
  48. // Helpers that draws the most common meshes
  49. IGL_INLINE void igl::opengl::ViewerData::set_mesh(
  50. const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F)
  51. {
  52. using namespace std;
  53. Eigen::MatrixXd V_temp;
  54. // If V only has two columns, pad with a column of zeros
  55. if (_V.cols() == 2)
  56. {
  57. V_temp = Eigen::MatrixXd::Zero(_V.rows(),3);
  58. V_temp.block(0,0,_V.rows(),2) = _V;
  59. }
  60. else
  61. V_temp = _V;
  62. if (V.rows() == 0 && F.rows() == 0)
  63. {
  64. V = V_temp;
  65. F = _F;
  66. compute_normals();
  67. uniform_colors(
  68. Eigen::Vector3d(GOLD_AMBIENT[0], GOLD_AMBIENT[1], GOLD_AMBIENT[2]),
  69. Eigen::Vector3d(GOLD_DIFFUSE[0], GOLD_DIFFUSE[1], GOLD_DIFFUSE[2]),
  70. Eigen::Vector3d(GOLD_SPECULAR[0], GOLD_SPECULAR[1], GOLD_SPECULAR[2]));
  71. // Generates a checkerboard texture
  72. grid_texture();
  73. }
  74. else
  75. {
  76. if (_V.rows() == V.rows() && _F.rows() == F.rows())
  77. {
  78. V = V_temp;
  79. F = _F;
  80. }
  81. else
  82. cerr << "ERROR (set_mesh): The new mesh has a different number of vertices/faces. Please clear the mesh before plotting."<<endl;
  83. }
  84. dirty |= MeshGL::DIRTY_FACE | MeshGL::DIRTY_POSITION;
  85. }
  86. IGL_INLINE void igl::opengl::ViewerData::set_vertices(const Eigen::MatrixXd& _V)
  87. {
  88. V = _V;
  89. assert(F.size() == 0 || F.maxCoeff() < V.rows());
  90. dirty |= MeshGL::DIRTY_POSITION;
  91. }
  92. IGL_INLINE void igl::opengl::ViewerData::set_normals(const Eigen::MatrixXd& N)
  93. {
  94. using namespace std;
  95. if (N.rows() == V.rows())
  96. {
  97. set_face_based(false);
  98. V_normals = N;
  99. }
  100. else if (N.rows() == F.rows() || N.rows() == F.rows()*3)
  101. {
  102. set_face_based(true);
  103. F_normals = N;
  104. }
  105. else
  106. cerr << "ERROR (set_normals): Please provide a normal per face, per corner or per vertex."<<endl;
  107. dirty |= MeshGL::DIRTY_NORMAL;
  108. }
  109. IGL_INLINE void igl::opengl::ViewerData::set_visible(bool value, unsigned int core_id /*= 1*/)
  110. {
  111. if (value)
  112. is_visible |= core_id;
  113. else
  114. is_visible &= ~core_id;
  115. }
  116. IGL_INLINE void igl::opengl::ViewerData::copy_options(const ViewerCore &from, const ViewerCore &to)
  117. {
  118. to.set(show_overlay , from.is_set(show_overlay) );
  119. to.set(show_overlay_depth, from.is_set(show_overlay_depth));
  120. to.set(show_texture , from.is_set(show_texture) );
  121. to.set(use_matcap , from.is_set(use_matcap) );
  122. to.set(show_faces , from.is_set(show_faces) );
  123. to.set(show_lines , from.is_set(show_lines) );
  124. }
  125. IGL_INLINE void igl::opengl::ViewerData::set_colors(const Eigen::MatrixXd &C)
  126. {
  127. using namespace std;
  128. using namespace Eigen;
  129. // This Gouraud coloring should be deprecated in favor of Phong coloring in
  130. // set-data
  131. if(C.rows()>0 && C.cols() == 1)
  132. {
  133. assert(false && "deprecated: call set_data directly instead");
  134. return set_data(C);
  135. }
  136. // Ambient color should be darker color
  137. const auto ambient = [](const MatrixXd & C)->MatrixXd
  138. {
  139. MatrixXd T = 0.1*C;
  140. T.col(3) = C.col(3);
  141. return T;
  142. };
  143. // Specular color should be a less saturated and darker color: dampened
  144. // highlights
  145. const auto specular = [](const MatrixXd & C)->MatrixXd
  146. {
  147. const double grey = 0.3;
  148. MatrixXd T = grey+0.1*(C.array()-grey);
  149. T.col(3) = C.col(3);
  150. return T;
  151. };
  152. if (C.rows() == 1)
  153. {
  154. for (unsigned i=0;i<V_material_diffuse.rows();++i)
  155. {
  156. if (C.cols() == 3)
  157. V_material_diffuse.row(i) << C.row(0),1;
  158. else if (C.cols() == 4)
  159. V_material_diffuse.row(i) << C.row(0);
  160. }
  161. V_material_ambient = ambient(V_material_diffuse);
  162. V_material_specular = specular(V_material_diffuse);
  163. for (unsigned i=0;i<F_material_diffuse.rows();++i)
  164. {
  165. if (C.cols() == 3)
  166. F_material_diffuse.row(i) << C.row(0),1;
  167. else if (C.cols() == 4)
  168. F_material_diffuse.row(i) << C.row(0);
  169. }
  170. F_material_ambient = ambient(F_material_diffuse);
  171. F_material_specular = specular(F_material_diffuse);
  172. }
  173. else if (C.rows() == V.rows())
  174. {
  175. set_face_based(false);
  176. for (unsigned i=0;i<V_material_diffuse.rows();++i)
  177. {
  178. if (C.cols() == 3)
  179. V_material_diffuse.row(i) << C.row(i), 1;
  180. else if (C.cols() == 4)
  181. V_material_diffuse.row(i) << C.row(i);
  182. }
  183. V_material_ambient = ambient(V_material_diffuse);
  184. V_material_specular = specular(V_material_diffuse);
  185. }
  186. else if (C.rows() == F.rows())
  187. {
  188. set_face_based(true);
  189. for (unsigned i=0;i<F_material_diffuse.rows();++i)
  190. {
  191. if (C.cols() == 3)
  192. F_material_diffuse.row(i) << C.row(i), 1;
  193. else if (C.cols() == 4)
  194. F_material_diffuse.row(i) << C.row(i);
  195. }
  196. F_material_ambient = ambient(F_material_diffuse);
  197. F_material_specular = specular(F_material_diffuse);
  198. }
  199. else
  200. cerr << "ERROR (set_colors): Please provide a single color, or a color per face or per vertex."<<endl;
  201. dirty |= MeshGL::DIRTY_DIFFUSE | MeshGL::DIRTY_SPECULAR | MeshGL::DIRTY_AMBIENT;
  202. }
  203. IGL_INLINE void igl::opengl::ViewerData::set_uv(const Eigen::MatrixXd& UV)
  204. {
  205. using namespace std;
  206. if (UV.rows() == V.rows())
  207. {
  208. set_face_based(false);
  209. V_uv = UV;
  210. }
  211. else
  212. cerr << "ERROR (set_UV): Please provide uv per vertex."<<endl;;
  213. dirty |= MeshGL::DIRTY_UV;
  214. }
  215. IGL_INLINE void igl::opengl::ViewerData::set_uv(const Eigen::MatrixXd& UV_V, const Eigen::MatrixXi& UV_F)
  216. {
  217. set_face_based(true);
  218. V_uv = UV_V.block(0,0,UV_V.rows(),2);
  219. F_uv = UV_F;
  220. dirty |= MeshGL::DIRTY_UV;
  221. }
  222. IGL_INLINE void igl::opengl::ViewerData::set_texture(
  223. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& R,
  224. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& G,
  225. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& B)
  226. {
  227. texture_R = R;
  228. texture_G = G;
  229. texture_B = B;
  230. texture_A = Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>::Constant(R.rows(),R.cols(),255);
  231. dirty |= MeshGL::DIRTY_TEXTURE;
  232. }
  233. IGL_INLINE void igl::opengl::ViewerData::set_texture(
  234. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& R,
  235. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& G,
  236. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& B,
  237. const Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>& A)
  238. {
  239. texture_R = R;
  240. texture_G = G;
  241. texture_B = B;
  242. texture_A = A;
  243. dirty |= MeshGL::DIRTY_TEXTURE;
  244. }
  245. IGL_INLINE void igl::opengl::ViewerData::set_data(
  246. const Eigen::VectorXd & D,
  247. double caxis_min,
  248. double caxis_max,
  249. igl::ColorMapType cmap,
  250. int num_steps)
  251. {
  252. if(!show_texture)
  253. {
  254. Eigen::MatrixXd CM;
  255. igl::colormap(cmap,Eigen::VectorXd::LinSpaced(num_steps,0,1).eval(),0,1,CM);
  256. set_colormap(CM);
  257. }
  258. set_uv(((D.array()-caxis_min)/(caxis_max-caxis_min)).replicate(1,2));
  259. }
  260. IGL_INLINE void igl::opengl::ViewerData::set_data(const Eigen::VectorXd & D, igl::ColorMapType cmap, int num_steps)
  261. {
  262. const double caxis_min = D.minCoeff();
  263. const double caxis_max = D.maxCoeff();
  264. return set_data(D,caxis_min,caxis_max,cmap,num_steps);
  265. }
  266. IGL_INLINE void igl::opengl::ViewerData::set_colormap(const Eigen::MatrixXd & CM)
  267. {
  268. assert(CM.cols() == 3 && "colormap CM should have 3 columns");
  269. // Convert to R,G,B textures
  270. const Eigen::Matrix<unsigned char,Eigen::Dynamic, Eigen::Dynamic> R =
  271. (CM.col(0)*255.0).cast<unsigned char>();
  272. const Eigen::Matrix<unsigned char,Eigen::Dynamic, Eigen::Dynamic> G =
  273. (CM.col(1)*255.0).cast<unsigned char>();
  274. const Eigen::Matrix<unsigned char,Eigen::Dynamic, Eigen::Dynamic> B =
  275. (CM.col(2)*255.0).cast<unsigned char>();
  276. set_colors(Eigen::RowVector3d(1,1,1));
  277. set_texture(R,G,B);
  278. show_texture = ~unsigned(0);
  279. meshgl.tex_filter = GL_NEAREST;
  280. meshgl.tex_wrap = GL_CLAMP_TO_EDGE;
  281. }
  282. IGL_INLINE void igl::opengl::ViewerData::set_points(
  283. const Eigen::MatrixXd& P,
  284. const Eigen::MatrixXd& C)
  285. {
  286. // clear existing points
  287. points.resize(0,0);
  288. add_points(P,C);
  289. }
  290. IGL_INLINE void igl::opengl::ViewerData::add_points(const Eigen::MatrixXd& P, const Eigen::MatrixXd& C)
  291. {
  292. Eigen::MatrixXd P_temp;
  293. // If P only has two columns, pad with a column of zeros
  294. if (P.cols() == 2)
  295. {
  296. P_temp = Eigen::MatrixXd::Zero(P.rows(),3);
  297. P_temp.block(0,0,P.rows(),2) = P;
  298. }
  299. else
  300. P_temp = P;
  301. int lastid = points.rows();
  302. points.conservativeResize(points.rows() + P_temp.rows(),6);
  303. for (unsigned i=0; i<P_temp.rows(); ++i)
  304. points.row(lastid+i) << P_temp.row(i), i<C.rows() ? C.row(i) : C.row(C.rows()-1);
  305. dirty |= MeshGL::DIRTY_OVERLAY_POINTS;
  306. }
  307. IGL_INLINE void igl::opengl::ViewerData::clear_points()
  308. {
  309. points.resize(0, 6);
  310. }
  311. IGL_INLINE void igl::opengl::ViewerData::set_edges(
  312. const Eigen::MatrixXd& P,
  313. const Eigen::MatrixXi& E,
  314. const Eigen::MatrixXd& C)
  315. {
  316. using namespace Eigen;
  317. lines.resize(E.rows(),9);
  318. assert(C.cols() == 3);
  319. for(int e = 0;e<E.rows();e++)
  320. {
  321. RowVector3d color;
  322. if(C.size() == 3)
  323. {
  324. color<<C;
  325. }else if(C.rows() == E.rows())
  326. {
  327. color<<C.row(e);
  328. }
  329. lines.row(e)<< P.row(E(e,0)), P.row(E(e,1)), color;
  330. }
  331. dirty |= MeshGL::DIRTY_OVERLAY_LINES;
  332. }
  333. IGL_INLINE void igl::opengl::ViewerData::add_edges(const Eigen::MatrixXd& P1, const Eigen::MatrixXd& P2, const Eigen::MatrixXd& C)
  334. {
  335. Eigen::MatrixXd P1_temp,P2_temp;
  336. // If P1 only has two columns, pad with a column of zeros
  337. if (P1.cols() == 2)
  338. {
  339. P1_temp = Eigen::MatrixXd::Zero(P1.rows(),3);
  340. P1_temp.block(0,0,P1.rows(),2) = P1;
  341. P2_temp = Eigen::MatrixXd::Zero(P2.rows(),3);
  342. P2_temp.block(0,0,P2.rows(),2) = P2;
  343. }
  344. else
  345. {
  346. P1_temp = P1;
  347. P2_temp = P2;
  348. }
  349. int lastid = lines.rows();
  350. lines.conservativeResize(lines.rows() + P1_temp.rows(),9);
  351. for (unsigned i=0; i<P1_temp.rows(); ++i)
  352. lines.row(lastid+i) << P1_temp.row(i), P2_temp.row(i), i<C.rows() ? C.row(i) : C.row(C.rows()-1);
  353. dirty |= MeshGL::DIRTY_OVERLAY_LINES;
  354. }
  355. IGL_INLINE void igl::opengl::ViewerData::clear_edges()
  356. {
  357. lines.resize(0, 9);
  358. }
  359. IGL_INLINE void igl::opengl::ViewerData::add_label(const Eigen::VectorXd& P, const std::string& str)
  360. {
  361. Eigen::RowVectorXd P_temp;
  362. // If P only has two columns, pad with a column of zeros
  363. if (P.size() == 2)
  364. {
  365. P_temp = Eigen::RowVectorXd::Zero(3);
  366. P_temp << P.transpose(), 0;
  367. }
  368. else
  369. P_temp = P;
  370. int lastid = labels_positions.rows();
  371. labels_positions.conservativeResize(lastid+1, 3);
  372. labels_positions.row(lastid) = P_temp;
  373. labels_strings.push_back(str);
  374. }
  375. IGL_INLINE void igl::opengl::ViewerData::set_labels(const Eigen::MatrixXd& P, const std::vector<std::string>& str)
  376. {
  377. assert(P.rows() == str.size() && "position # and label # do not match!");
  378. assert(P.cols() == 3 && "dimension of label positions incorrect!");
  379. labels_positions = P;
  380. labels_strings = str;
  381. }
  382. IGL_INLINE void igl::opengl::ViewerData::clear_labels()
  383. {
  384. labels_positions.resize(0,3);
  385. labels_strings.clear();
  386. }
  387. IGL_INLINE void igl::opengl::ViewerData::clear()
  388. {
  389. V = Eigen::MatrixXd (0,3);
  390. F = Eigen::MatrixXi (0,3);
  391. F_material_ambient = Eigen::MatrixXd (0,4);
  392. F_material_diffuse = Eigen::MatrixXd (0,4);
  393. F_material_specular = Eigen::MatrixXd (0,4);
  394. V_material_ambient = Eigen::MatrixXd (0,4);
  395. V_material_diffuse = Eigen::MatrixXd (0,4);
  396. V_material_specular = Eigen::MatrixXd (0,4);
  397. F_normals = Eigen::MatrixXd (0,3);
  398. V_normals = Eigen::MatrixXd (0,3);
  399. V_uv = Eigen::MatrixXd (0,2);
  400. F_uv = Eigen::MatrixXi (0,3);
  401. lines = Eigen::MatrixXd (0,9);
  402. points = Eigen::MatrixXd (0,6);
  403. labels_positions = Eigen::MatrixXd (0,3);
  404. labels_strings.clear();
  405. face_based = false;
  406. double_sided = false;
  407. invert_normals = false;
  408. show_texture = false;
  409. use_matcap = false;
  410. }
  411. IGL_INLINE void igl::opengl::ViewerData::compute_normals()
  412. {
  413. igl::per_face_normals(V, F, F_normals);
  414. igl::per_vertex_normals(V, F, F_normals, V_normals);
  415. dirty |= MeshGL::DIRTY_NORMAL;
  416. }
  417. IGL_INLINE void igl::opengl::ViewerData::uniform_colors(
  418. const Eigen::Vector3d& ambient,
  419. const Eigen::Vector3d& diffuse,
  420. const Eigen::Vector3d& specular)
  421. {
  422. Eigen::Vector4d ambient4;
  423. Eigen::Vector4d diffuse4;
  424. Eigen::Vector4d specular4;
  425. ambient4 << ambient, 1;
  426. diffuse4 << diffuse, 1;
  427. specular4 << specular, 1;
  428. uniform_colors(ambient4,diffuse4,specular4);
  429. }
  430. IGL_INLINE void igl::opengl::ViewerData::uniform_colors(
  431. const Eigen::Vector4d& ambient,
  432. const Eigen::Vector4d& diffuse,
  433. const Eigen::Vector4d& specular)
  434. {
  435. V_material_ambient.resize(V.rows(),4);
  436. V_material_diffuse.resize(V.rows(),4);
  437. V_material_specular.resize(V.rows(),4);
  438. for (unsigned i=0; i<V.rows();++i)
  439. {
  440. V_material_ambient.row(i) = ambient;
  441. V_material_diffuse.row(i) = diffuse;
  442. V_material_specular.row(i) = specular;
  443. }
  444. F_material_ambient.resize(F.rows(),4);
  445. F_material_diffuse.resize(F.rows(),4);
  446. F_material_specular.resize(F.rows(),4);
  447. for (unsigned i=0; i<F.rows();++i)
  448. {
  449. F_material_ambient.row(i) = ambient;
  450. F_material_diffuse.row(i) = diffuse;
  451. F_material_specular.row(i) = specular;
  452. }
  453. dirty |= MeshGL::DIRTY_SPECULAR | MeshGL::DIRTY_DIFFUSE | MeshGL::DIRTY_AMBIENT;
  454. }
  455. IGL_INLINE void igl::opengl::ViewerData::normal_matcap()
  456. {
  457. const int size = 512;
  458. texture_R.resize(size, size);
  459. texture_G.resize(size, size);
  460. texture_B.resize(size, size);
  461. const Eigen::Vector3d navy(0.3,0.3,0.5);
  462. static const auto clamp = [](double t){ return std::max(std::min(t,1.0),0.0);};
  463. for(int i = 0;i<size;i++)
  464. {
  465. const double x = (double(i)/double(size-1)*2.-1.);
  466. for(int j = 0;j<size;j++)
  467. {
  468. const double y = (double(j)/double(size-1)*2.-1.);
  469. const double z = sqrt(1.0-std::min(x*x+y*y,1.0));
  470. Eigen::Vector3d C = Eigen::Vector3d(x*0.5+0.5,y*0.5+0.5,z);
  471. texture_R(i,j) = clamp(C(0))*255;
  472. texture_G(i,j) = clamp(C(1))*255;
  473. texture_B(i,j) = clamp(C(2))*255;
  474. }
  475. }
  476. texture_A.setConstant(texture_R.rows(),texture_R.cols(),255);
  477. dirty |= MeshGL::DIRTY_TEXTURE;
  478. }
  479. IGL_INLINE void igl::opengl::ViewerData::grid_texture()
  480. {
  481. unsigned size = 128;
  482. unsigned size2 = size/2;
  483. texture_R.resize(size, size);
  484. for (unsigned i=0; i<size; ++i)
  485. {
  486. for (unsigned j=0; j<size; ++j)
  487. {
  488. texture_R(i,j) = 0;
  489. if ((i<size2 && j<size2) || (i>=size2 && j>=size2))
  490. texture_R(i,j) = 255;
  491. }
  492. }
  493. texture_G = texture_R;
  494. texture_B = texture_R;
  495. texture_A = Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic>::Constant(texture_R.rows(),texture_R.cols(),255);
  496. dirty |= MeshGL::DIRTY_TEXTURE;
  497. }
  498. IGL_INLINE void igl::opengl::ViewerData::updateGL(
  499. const igl::opengl::ViewerData& data,
  500. const bool invert_normals,
  501. igl::opengl::MeshGL& meshgl
  502. )
  503. {
  504. if (!meshgl.is_initialized)
  505. {
  506. meshgl.init();
  507. }
  508. bool per_corner_uv = (data.F_uv.rows() == data.F.rows());
  509. bool per_corner_normals = (data.F_normals.rows() == 3 * data.F.rows());
  510. meshgl.dirty |= data.dirty;
  511. // Input:
  512. // X #F by dim quantity
  513. // Output:
  514. // X_vbo #F*3 by dim scattering per corner
  515. const auto per_face = [&data](
  516. const Eigen::MatrixXd & X,
  517. MeshGL::RowMatrixXf & X_vbo)
  518. {
  519. assert(X.cols() == 4);
  520. X_vbo.resize(data.F.rows()*3,4);
  521. for (unsigned i=0; i<data.F.rows();++i)
  522. for (unsigned j=0;j<3;++j)
  523. X_vbo.row(i*3+j) = X.row(i).cast<float>();
  524. };
  525. // Input:
  526. // X #V by dim quantity
  527. // Output:
  528. // X_vbo #F*3 by dim scattering per corner
  529. const auto per_corner = [&data](
  530. const Eigen::MatrixXd & X,
  531. MeshGL::RowMatrixXf & X_vbo)
  532. {
  533. X_vbo.resize(data.F.rows()*3,X.cols());
  534. for (unsigned i=0; i<data.F.rows();++i)
  535. for (unsigned j=0;j<3;++j)
  536. X_vbo.row(i*3+j) = X.row(data.F(i,j)).cast<float>();
  537. };
  538. if (!data.face_based)
  539. {
  540. if (!(per_corner_uv || per_corner_normals))
  541. {
  542. // Vertex positions
  543. if (meshgl.dirty & MeshGL::DIRTY_POSITION)
  544. meshgl.V_vbo = data.V.cast<float>();
  545. // Vertex normals
  546. if (meshgl.dirty & MeshGL::DIRTY_NORMAL)
  547. {
  548. meshgl.V_normals_vbo = data.V_normals.cast<float>();
  549. if (invert_normals)
  550. meshgl.V_normals_vbo = -meshgl.V_normals_vbo;
  551. }
  552. // Per-vertex material settings
  553. if (meshgl.dirty & MeshGL::DIRTY_AMBIENT)
  554. meshgl.V_ambient_vbo = data.V_material_ambient.cast<float>();
  555. if (meshgl.dirty & MeshGL::DIRTY_DIFFUSE)
  556. meshgl.V_diffuse_vbo = data.V_material_diffuse.cast<float>();
  557. if (meshgl.dirty & MeshGL::DIRTY_SPECULAR)
  558. meshgl.V_specular_vbo = data.V_material_specular.cast<float>();
  559. // Face indices
  560. if (meshgl.dirty & MeshGL::DIRTY_FACE)
  561. meshgl.F_vbo = data.F.cast<unsigned>();
  562. // Texture coordinates
  563. if (meshgl.dirty & MeshGL::DIRTY_UV)
  564. {
  565. meshgl.V_uv_vbo = data.V_uv.cast<float>();
  566. }
  567. }
  568. else
  569. {
  570. // Per vertex properties with per corner UVs
  571. if (meshgl.dirty & MeshGL::DIRTY_POSITION)
  572. {
  573. per_corner(data.V,meshgl.V_vbo);
  574. }
  575. if (meshgl.dirty & MeshGL::DIRTY_AMBIENT)
  576. {
  577. meshgl.V_ambient_vbo.resize(data.F.rows()*3,4);
  578. for (unsigned i=0; i<data.F.rows();++i)
  579. for (unsigned j=0;j<3;++j)
  580. meshgl.V_ambient_vbo.row(i*3+j) = data.V_material_ambient.row(data.F(i,j)).cast<float>();
  581. }
  582. if (meshgl.dirty & MeshGL::DIRTY_DIFFUSE)
  583. {
  584. meshgl.V_diffuse_vbo.resize(data.F.rows()*3,4);
  585. for (unsigned i=0; i<data.F.rows();++i)
  586. for (unsigned j=0;j<3;++j)
  587. meshgl.V_diffuse_vbo.row(i*3+j) = data.V_material_diffuse.row(data.F(i,j)).cast<float>();
  588. }
  589. if (meshgl.dirty & MeshGL::DIRTY_SPECULAR)
  590. {
  591. meshgl.V_specular_vbo.resize(data.F.rows()*3,4);
  592. for (unsigned i=0; i<data.F.rows();++i)
  593. for (unsigned j=0;j<3;++j)
  594. meshgl.V_specular_vbo.row(i*3+j) = data.V_material_specular.row(data.F(i,j)).cast<float>();
  595. }
  596. if (meshgl.dirty & MeshGL::DIRTY_NORMAL)
  597. {
  598. meshgl.V_normals_vbo.resize(data.F.rows()*3,3);
  599. for (unsigned i=0; i<data.F.rows();++i)
  600. for (unsigned j=0;j<3;++j)
  601. meshgl.V_normals_vbo.row(i*3+j) =
  602. per_corner_normals ?
  603. data.F_normals.row(i*3+j).cast<float>() :
  604. data.V_normals.row(data.F(i,j)).cast<float>();
  605. if (invert_normals)
  606. meshgl.V_normals_vbo = -meshgl.V_normals_vbo;
  607. }
  608. if (meshgl.dirty & MeshGL::DIRTY_FACE)
  609. {
  610. meshgl.F_vbo.resize(data.F.rows(),3);
  611. for (unsigned i=0; i<data.F.rows();++i)
  612. meshgl.F_vbo.row(i) << i*3+0, i*3+1, i*3+2;
  613. }
  614. if (meshgl.dirty & MeshGL::DIRTY_UV)
  615. {
  616. meshgl.V_uv_vbo.resize(data.F.rows()*3,2);
  617. for (unsigned i=0; i<data.F.rows();++i)
  618. for (unsigned j=0;j<3;++j)
  619. meshgl.V_uv_vbo.row(i*3+j) =
  620. data.V_uv.row(per_corner_uv ?
  621. data.F_uv(i,j) : data.F(i,j)).cast<float>();
  622. }
  623. }
  624. } else
  625. {
  626. if (meshgl.dirty & MeshGL::DIRTY_POSITION)
  627. {
  628. per_corner(data.V,meshgl.V_vbo);
  629. }
  630. if (meshgl.dirty & MeshGL::DIRTY_AMBIENT)
  631. {
  632. per_face(data.F_material_ambient,meshgl.V_ambient_vbo);
  633. }
  634. if (meshgl.dirty & MeshGL::DIRTY_DIFFUSE)
  635. {
  636. per_face(data.F_material_diffuse,meshgl.V_diffuse_vbo);
  637. }
  638. if (meshgl.dirty & MeshGL::DIRTY_SPECULAR)
  639. {
  640. per_face(data.F_material_specular,meshgl.V_specular_vbo);
  641. }
  642. if (meshgl.dirty & MeshGL::DIRTY_NORMAL)
  643. {
  644. meshgl.V_normals_vbo.resize(data.F.rows()*3,3);
  645. for (unsigned i=0; i<data.F.rows();++i)
  646. for (unsigned j=0;j<3;++j)
  647. meshgl.V_normals_vbo.row(i*3+j) =
  648. per_corner_normals ?
  649. data.F_normals.row(i*3+j).cast<float>() :
  650. data.F_normals.row(i).cast<float>();
  651. if (invert_normals)
  652. meshgl.V_normals_vbo = -meshgl.V_normals_vbo;
  653. }
  654. if (meshgl.dirty & MeshGL::DIRTY_FACE)
  655. {
  656. meshgl.F_vbo.resize(data.F.rows(),3);
  657. for (unsigned i=0; i<data.F.rows();++i)
  658. meshgl.F_vbo.row(i) << i*3+0, i*3+1, i*3+2;
  659. }
  660. if( (meshgl.dirty & MeshGL::DIRTY_UV) && data.V_uv.rows()>0)
  661. {
  662. meshgl.V_uv_vbo.resize(data.F.rows()*3,2);
  663. for (unsigned i=0; i<data.F.rows();++i)
  664. for (unsigned j=0;j<3;++j)
  665. meshgl.V_uv_vbo.row(i*3+j) = data.V_uv.row(per_corner_uv ? data.F_uv(i,j) : data.F(i,j)).cast<float>();
  666. }
  667. }
  668. if (meshgl.dirty & MeshGL::DIRTY_TEXTURE)
  669. {
  670. meshgl.tex_u = data.texture_R.rows();
  671. meshgl.tex_v = data.texture_R.cols();
  672. meshgl.tex.resize(data.texture_R.size()*4);
  673. for (unsigned i=0;i<data.texture_R.size();++i)
  674. {
  675. meshgl.tex(i*4+0) = data.texture_R(i);
  676. meshgl.tex(i*4+1) = data.texture_G(i);
  677. meshgl.tex(i*4+2) = data.texture_B(i);
  678. meshgl.tex(i*4+3) = data.texture_A(i);
  679. }
  680. }
  681. if (meshgl.dirty & MeshGL::DIRTY_OVERLAY_LINES)
  682. {
  683. meshgl.lines_V_vbo.resize(data.lines.rows()*2,3);
  684. meshgl.lines_V_colors_vbo.resize(data.lines.rows()*2,3);
  685. meshgl.lines_F_vbo.resize(data.lines.rows()*2,1);
  686. for (unsigned i=0; i<data.lines.rows();++i)
  687. {
  688. meshgl.lines_V_vbo.row(2*i+0) = data.lines.block<1, 3>(i, 0).cast<float>();
  689. meshgl.lines_V_vbo.row(2*i+1) = data.lines.block<1, 3>(i, 3).cast<float>();
  690. meshgl.lines_V_colors_vbo.row(2*i+0) = data.lines.block<1, 3>(i, 6).cast<float>();
  691. meshgl.lines_V_colors_vbo.row(2*i+1) = data.lines.block<1, 3>(i, 6).cast<float>();
  692. meshgl.lines_F_vbo(2*i+0) = 2*i+0;
  693. meshgl.lines_F_vbo(2*i+1) = 2*i+1;
  694. }
  695. }
  696. if (meshgl.dirty & MeshGL::DIRTY_OVERLAY_POINTS)
  697. {
  698. meshgl.points_V_vbo.resize(data.points.rows(),3);
  699. meshgl.points_V_colors_vbo.resize(data.points.rows(),3);
  700. meshgl.points_F_vbo.resize(data.points.rows(),1);
  701. for (unsigned i=0; i<data.points.rows();++i)
  702. {
  703. meshgl.points_V_vbo.row(i) = data.points.block<1, 3>(i, 0).cast<float>();
  704. meshgl.points_V_colors_vbo.row(i) = data.points.block<1, 3>(i, 3).cast<float>();
  705. meshgl.points_F_vbo(i) = i;
  706. }
  707. }
  708. }