normal_derivative.cpp 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2015 Alec Jacobson <[email protected]>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "LinSpaced.h"
  9. #include "normal_derivative.h"
  10. #include "cotmatrix_entries.h"
  11. #include "placeholders.h"
  12. #include <cassert>
  13. template <
  14. typename DerivedV,
  15. typename DerivedEle,
  16. typename Scalar>
  17. IGL_INLINE void igl::normal_derivative(
  18. const Eigen::MatrixBase<DerivedV> & V,
  19. const Eigen::MatrixBase<DerivedEle> & Ele,
  20. Eigen::SparseMatrix<Scalar>& DD)
  21. {
  22. using namespace Eigen;
  23. using namespace std;
  24. // Element simplex-size
  25. const size_t ss = Ele.cols();
  26. assert( ((ss==3) || (ss==4)) && "Only triangles or tets");
  27. // cotangents
  28. Matrix<Scalar,Dynamic,Dynamic> C;
  29. cotmatrix_entries(V,Ele,C);
  30. vector<Triplet<Scalar> > IJV;
  31. // Number of elements
  32. const size_t m = Ele.rows();
  33. // Number of vertices
  34. const size_t n = V.rows();
  35. switch(ss)
  36. {
  37. default:
  38. assert(false);
  39. return;
  40. case 4:
  41. {
  42. const MatrixXi DDJ =
  43. Ele(igl::placeholders::all,{1,0,2,0,3,0,2,1,3,1,0,1,3,2,0,2,1,2,0,3,1,3,2,3});
  44. MatrixXi DDI(m,24);
  45. for(size_t f = 0;f<4;f++)
  46. {
  47. const auto & I = (igl::LinSpaced<VectorXi >(m,0,m-1).array()+f*m).eval();
  48. for(size_t r = 0;r<6;r++)
  49. {
  50. DDI.col(f*6+r) = I;
  51. }
  52. }
  53. const DiagonalMatrix<Scalar,24,24> S =
  54. (Matrix<Scalar,2,1>(1,-1).template replicate<12,1>()).asDiagonal();
  55. Matrix<Scalar,Dynamic,Dynamic> DDV =
  56. C(igl::placeholders::all,{2,2,1,1,3,3,0,0,4,4,2,2,5,5,1,1,0,0,3,3,4,4,5,5});
  57. DDV *= S;
  58. IJV.reserve(DDV.size());
  59. for(size_t f = 0;f<6*4;f++)
  60. {
  61. for(size_t e = 0;e<m;e++)
  62. {
  63. IJV.push_back(Triplet<Scalar>(DDI(e,f),DDJ(e,f),DDV(e,f)));
  64. }
  65. }
  66. DD.resize(m*4,n);
  67. DD.setFromTriplets(IJV.begin(),IJV.end());
  68. break;
  69. }
  70. case 3:
  71. {
  72. const MatrixXi DDJ = Ele(igl::placeholders::all,{2,0,1,0,0,1,2,1,1,2,0,2});
  73. MatrixXi DDI(m,12);
  74. for(size_t f = 0;f<3;f++)
  75. {
  76. const auto & I = (igl::LinSpaced<VectorXi >(m,0,m-1).array()+f*m).eval();
  77. for(size_t r = 0;r<4;r++)
  78. {
  79. DDI.col(f*4+r) = I;
  80. }
  81. }
  82. const DiagonalMatrix<Scalar,12,12> S =
  83. (Matrix<Scalar,2,1>(1,-1).template replicate<6,1>()).asDiagonal();
  84. Matrix<Scalar,Dynamic,Dynamic> DDV = C(igl::placeholders::all,{1,1,2,2,2,2,0,0,0,0,1,1});
  85. DDV *= S;
  86. IJV.reserve(DDV.size());
  87. for(size_t f = 0;f<12;f++)
  88. {
  89. for(size_t e = 0;e<m;e++)
  90. {
  91. IJV.push_back(Triplet<Scalar>(DDI(e,f),DDJ(e,f),DDV(e,f)));
  92. }
  93. }
  94. DD.resize(m*3,n);
  95. DD.setFromTriplets(IJV.begin(),IJV.end());
  96. break;
  97. }
  98. }
  99. }
  100. #ifdef IGL_STATIC_LIBRARY
  101. // Explicit template instantiation
  102. template void igl::normal_derivative<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&);
  103. #endif