scaf.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2018 Zhongshi Jiang <[email protected]>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "scaf.h"
  9. #include "triangulate.h"
  10. #include <Eigen/Dense>
  11. #include <Eigen/IterativeLinearSolvers>
  12. #include <Eigen/Sparse>
  13. #include <Eigen/SparseCholesky>
  14. #include <Eigen/SparseQR>
  15. #include "../PI.h"
  16. #include "../Timer.h"
  17. #include "../boundary_loop.h"
  18. #include "../cat.h"
  19. #include "../IGL_ASSERT.h"
  20. #include "../doublearea.h"
  21. #include "../flip_avoiding_line_search.h"
  22. #include "../flipped_triangles.h"
  23. #include "../grad.h"
  24. #include "../harmonic.h"
  25. #include "../local_basis.h"
  26. #include "../map_vertices_to_circle.h"
  27. #include "../polar_svd.h"
  28. #include "../slice.h"
  29. #include "../slice_into.h"
  30. #include "../slim.h"
  31. #include "../placeholders.h"
  32. #include "../mapping_energy_with_jacobians.h"
  33. #include <map>
  34. #include <algorithm>
  35. #include <set>
  36. #include <vector>
  37. namespace igl
  38. {
  39. namespace triangle
  40. {
  41. namespace scaf
  42. {
  43. IGL_INLINE void update_scaffold(igl::triangle::SCAFData &s)
  44. {
  45. s.mv_num = s.m_V.rows();
  46. s.mf_num = s.m_T.rows();
  47. s.v_num = s.w_uv.rows();
  48. s.sf_num = s.s_T.rows();
  49. s.sv_num = s.v_num - s.mv_num;
  50. s.f_num = s.sf_num + s.mf_num;
  51. s.s_M = Eigen::VectorXd::Constant(s.sf_num, s.scaffold_factor);
  52. }
  53. IGL_INLINE void adjusted_grad(Eigen::MatrixXd &V,
  54. Eigen::MatrixXi &F,
  55. double area_threshold,
  56. Eigen::SparseMatrix<double> &Dx,
  57. Eigen::SparseMatrix<double> &Dy,
  58. Eigen::SparseMatrix<double> &Dz)
  59. {
  60. Eigen::VectorXd M;
  61. igl::doublearea(V, F, M);
  62. std::vector<int> degen;
  63. for (int i = 0; i < M.size(); i++)
  64. if (M(i) < area_threshold)
  65. degen.push_back(i);
  66. Eigen::SparseMatrix<double> G;
  67. igl::grad(V, F, G);
  68. Dx = G.topRows(F.rows());
  69. Dy = G.block(F.rows(), 0, F.rows(), V.rows());
  70. Dz = G.bottomRows(F.rows());
  71. // handcraft uniform gradient for faces area falling below threshold.
  72. double sin60 = std::sin(igl::PI / 3);
  73. double cos60 = std::cos(igl::PI / 3);
  74. double deno = std::sqrt(sin60 * area_threshold);
  75. Eigen::MatrixXd standard_grad(3, 3);
  76. standard_grad << -sin60 / deno, sin60 / deno, 0,
  77. -cos60 / deno, -cos60 / deno, 1 / deno,
  78. 0, 0, 0;
  79. for (auto k : degen)
  80. for (int j = 0; j < 3; j++)
  81. {
  82. Dx.coeffRef(k, F(k, j)) = standard_grad(0, j);
  83. Dy.coeffRef(k, F(k, j)) = standard_grad(1, j);
  84. Dz.coeffRef(k, F(k, j)) = standard_grad(2, j);
  85. }
  86. }
  87. IGL_INLINE void compute_scaffold_gradient_matrix(SCAFData &s,
  88. Eigen::SparseMatrix<double> &D1,
  89. Eigen::SparseMatrix<double> &D2)
  90. {
  91. using namespace Eigen;
  92. Eigen::SparseMatrix<double> G;
  93. MatrixXi F_s = s.s_T;
  94. int vn = s.v_num;
  95. MatrixXd V = MatrixXd::Zero(vn, 3);
  96. V.leftCols(2) = s.w_uv;
  97. double min_bnd_edge_len = INFINITY;
  98. int acc_bnd = 0;
  99. for (int i = 0; i < s.bnd_sizes.size(); i++)
  100. {
  101. int current_size = s.bnd_sizes[i];
  102. for (int e = acc_bnd; e < acc_bnd + current_size - 1; e++)
  103. {
  104. min_bnd_edge_len = (std::min)(min_bnd_edge_len,
  105. (s.w_uv.row(s.internal_bnd(e)) -
  106. s.w_uv.row(s.internal_bnd(e + 1)))
  107. .squaredNorm());
  108. }
  109. min_bnd_edge_len = (std::min)(min_bnd_edge_len,
  110. (s.w_uv.row(s.internal_bnd(acc_bnd)) -
  111. s.w_uv.row(s.internal_bnd(acc_bnd + current_size - 1)))
  112. .squaredNorm());
  113. acc_bnd += current_size;
  114. }
  115. double area_threshold = min_bnd_edge_len / 4.0;
  116. Eigen::SparseMatrix<double> Dx, Dy, Dz;
  117. adjusted_grad(V, F_s, area_threshold, Dx, Dy, Dz);
  118. MatrixXd F1, F2, F3;
  119. igl::local_basis(V, F_s, F1, F2, F3);
  120. D1 = F1.col(0).asDiagonal() * Dx + F1.col(1).asDiagonal() * Dy +
  121. F1.col(2).asDiagonal() * Dz;
  122. D2 = F2.col(0).asDiagonal() * Dx + F2.col(1).asDiagonal() * Dy +
  123. F2.col(2).asDiagonal() * Dz;
  124. }
  125. IGL_INLINE void mesh_improve(igl::triangle::SCAFData &s)
  126. {
  127. using namespace Eigen;
  128. MatrixXd m_uv = s.w_uv.topRows(s.mv_num);
  129. MatrixXd V_bnd;
  130. V_bnd.resize(s.internal_bnd.size(), 2);
  131. for (int i = 0; i < s.internal_bnd.size(); i++) // redoing step 1.
  132. {
  133. V_bnd.row(i) = m_uv.row(s.internal_bnd(i));
  134. }
  135. if (s.rect_frame_V.size() == 0)
  136. {
  137. Matrix2d ob; // = rect_corners;
  138. {
  139. VectorXd uv_max = m_uv.colwise().maxCoeff();
  140. VectorXd uv_min = m_uv.colwise().minCoeff();
  141. VectorXd uv_mid = (uv_max + uv_min) / 2.;
  142. Eigen::Array2d scaf_range(3, 3);
  143. ob.row(0) = uv_mid.array() + scaf_range * ((uv_min - uv_mid).array());
  144. ob.row(1) = uv_mid.array() + scaf_range * ((uv_max - uv_mid).array());
  145. }
  146. Vector2d rect_len;
  147. rect_len << ob(1, 0) - ob(0, 0), ob(1, 1) - ob(0, 1);
  148. int frame_points = 5;
  149. s.rect_frame_V.resize(4 * frame_points, 2);
  150. for (int i = 0; i < frame_points; i++)
  151. {
  152. // 0,0;0,1
  153. s.rect_frame_V.row(i) << ob(0, 0), ob(0, 1) + i * rect_len(1) / frame_points;
  154. // 0,0;1,1
  155. s.rect_frame_V.row(i + frame_points)
  156. << ob(0, 0) + i * rect_len(0) / frame_points,
  157. ob(1, 1);
  158. // 1,0;1,1
  159. s.rect_frame_V.row(i + 2 * frame_points) << ob(1, 0), ob(1, 1) - i * rect_len(1) / frame_points;
  160. // 1,0;0,1
  161. s.rect_frame_V.row(i + 3 * frame_points)
  162. << ob(1, 0) - i * rect_len(0) / frame_points,
  163. ob(0, 1);
  164. // 0,0;0,1
  165. }
  166. s.frame_ids = Eigen::VectorXi::LinSpaced(s.rect_frame_V.rows(), s.mv_num, s.mv_num + s.rect_frame_V.rows());
  167. }
  168. // Concatenate Vert and Edge
  169. MatrixXd V;
  170. MatrixXi E;
  171. igl::cat(1, V_bnd, s.rect_frame_V, V);
  172. E.resize(V.rows(), 2);
  173. for (int i = 0; i < E.rows(); i++)
  174. E.row(i) << i, i + 1;
  175. int acc_bs = 0;
  176. for (auto bs : s.bnd_sizes)
  177. {
  178. E(acc_bs + bs - 1, 1) = acc_bs;
  179. acc_bs += bs;
  180. }
  181. E(V.rows() - 1, 1) = acc_bs;
  182. assert(acc_bs == s.internal_bnd.size());
  183. MatrixXd H = MatrixXd::Zero(s.component_sizes.size(), 2);
  184. {
  185. int hole_f = 0;
  186. int hole_i = 0;
  187. for (auto cs : s.component_sizes)
  188. {
  189. for (int i = 0; i < 3; i++)
  190. H.row(hole_i) += m_uv.row(s.m_T(hole_f, i)); // redoing step 2
  191. hole_f += cs;
  192. hole_i++;
  193. }
  194. }
  195. H /= 3.;
  196. MatrixXd uv2;
  197. igl::triangle::triangulate(V, E, H, std::basic_string<char>("qYYQ"), uv2, s.s_T);
  198. auto bnd_n = s.internal_bnd.size();
  199. for (auto i = 0; i < s.s_T.rows(); i++)
  200. for (auto j = 0; j < s.s_T.cols(); j++)
  201. {
  202. auto &x = s.s_T(i, j);
  203. if (x < bnd_n)
  204. x = s.internal_bnd(x);
  205. else
  206. x += m_uv.rows() - bnd_n;
  207. }
  208. igl::cat(1, s.m_T, s.s_T, s.w_T);
  209. s.w_uv.conservativeResize(m_uv.rows() - bnd_n + uv2.rows(), 2);
  210. s.w_uv.bottomRows(uv2.rows() - bnd_n) = uv2.bottomRows(-bnd_n + uv2.rows());
  211. update_scaffold(s);
  212. // after_mesh_improve
  213. compute_scaffold_gradient_matrix(s, s.Dx_s, s.Dy_s);
  214. s.Dx_s.makeCompressed();
  215. s.Dy_s.makeCompressed();
  216. s.Dz_s.makeCompressed();
  217. s.Ri_s = MatrixXd::Zero(s.Dx_s.rows(), s.dim * s.dim);
  218. s.Ji_s.resize(s.Dx_s.rows(), s.dim * s.dim);
  219. s.W_s.resize(s.Dx_s.rows(), s.dim * s.dim);
  220. }
  221. IGL_INLINE void add_new_patch(igl::triangle::SCAFData &s, const Eigen::MatrixXd &V_ref,
  222. const Eigen::MatrixXi &F_ref,
  223. const Eigen::RowVectorXd &/*center*/,
  224. const Eigen::MatrixXd &uv_init)
  225. {
  226. using namespace std;
  227. using namespace Eigen;
  228. assert(uv_init.rows() != 0);
  229. Eigen::VectorXd M;
  230. igl::doublearea(V_ref, F_ref, M);
  231. s.mesh_measure += M.sum() / 2;
  232. Eigen::VectorXi bnd;
  233. Eigen::MatrixXd bnd_uv;
  234. std::vector<std::vector<int>> all_bnds;
  235. igl::boundary_loop(F_ref, all_bnds);
  236. s.component_sizes.push_back(F_ref.rows());
  237. MatrixXd m_uv = s.w_uv.topRows(s.mv_num);
  238. igl::cat(1, m_uv, uv_init, s.w_uv);
  239. s.m_M.conservativeResize(s.mf_num + M.size());
  240. s.m_M.bottomRows(M.size()) = M / 2;
  241. for (auto cur_bnd : all_bnds)
  242. {
  243. s.internal_bnd.conservativeResize(s.internal_bnd.size() + cur_bnd.size());
  244. s.internal_bnd.bottomRows(cur_bnd.size()) = Map<ArrayXi>(cur_bnd.data(), cur_bnd.size()) + s.mv_num;
  245. s.bnd_sizes.push_back(cur_bnd.size());
  246. }
  247. s.m_T.conservativeResize(s.mf_num + F_ref.rows(), 3);
  248. s.m_T.bottomRows(F_ref.rows()) = F_ref.array() + s.mv_num;
  249. s.mf_num += F_ref.rows();
  250. s.m_V.conservativeResize(s.mv_num + V_ref.rows(), 3);
  251. s.m_V.bottomRows(V_ref.rows()) = V_ref;
  252. s.mv_num += V_ref.rows();
  253. s.rect_frame_V = MatrixXd();
  254. mesh_improve(s);
  255. }
  256. IGL_INLINE void compute_jacobians(SCAFData &s, const Eigen::MatrixXd &V_new, bool whole)
  257. {
  258. auto comp_J2 = [](const Eigen::MatrixXd &uv,
  259. const Eigen::SparseMatrix<double> &Dx,
  260. const Eigen::SparseMatrix<double> &Dy,
  261. Eigen::MatrixXd &Ji) {
  262. // Ji=[D1*u,D2*u,D1*v,D2*v];
  263. Ji.resize(Dx.rows(), 4);
  264. Ji.col(0) = Dx * uv.col(0);
  265. Ji.col(1) = Dy * uv.col(0);
  266. Ji.col(2) = Dx * uv.col(1);
  267. Ji.col(3) = Dy * uv.col(1);
  268. };
  269. Eigen::MatrixXd m_V_new = V_new.topRows(s.mv_num);
  270. comp_J2(m_V_new, s.Dx_m, s.Dy_m, s.Ji_m);
  271. if (whole)
  272. comp_J2(V_new, s.Dx_s, s.Dy_s, s.Ji_s);
  273. }
  274. IGL_INLINE double compute_energy_from_jacobians(const Eigen::MatrixXd &Ji,
  275. const Eigen::VectorXd &areas,
  276. igl::MappingEnergyType energy_type)
  277. {
  278. double energy = 0;
  279. if (energy_type == igl::MappingEnergyType::SYMMETRIC_DIRICHLET)
  280. energy = -4; // comply with paper description
  281. return energy + igl::mapping_energy_with_jacobians(Ji, areas, energy_type, 0);
  282. }
  283. IGL_INLINE double compute_soft_constraint_energy(const SCAFData &s)
  284. {
  285. double e = 0;
  286. for (auto const &x : s.soft_cons)
  287. e += s.soft_const_p * (x.second - s.w_uv.row(x.first)).squaredNorm();
  288. return e;
  289. }
  290. IGL_INLINE double compute_energy(SCAFData &s, const Eigen::MatrixXd &w_uv, bool whole)
  291. {
  292. if (w_uv.rows() != s.v_num)
  293. assert(!whole);
  294. compute_jacobians(s, w_uv, whole);
  295. double energy = compute_energy_from_jacobians(s.Ji_m, s.m_M, s.slim_energy);
  296. if (whole)
  297. energy += compute_energy_from_jacobians(s.Ji_s, s.s_M, s.scaf_energy);
  298. energy += compute_soft_constraint_energy(s);
  299. return energy;
  300. }
  301. IGL_INLINE void buildAm(const Eigen::VectorXd &sqrt_M,
  302. const Eigen::SparseMatrix<double> &Dx,
  303. const Eigen::SparseMatrix<double> &Dy,
  304. const Eigen::MatrixXd &W,
  305. Eigen::SparseMatrix<double> &Am)
  306. {
  307. std::vector<Eigen::Triplet<double>> IJV;
  308. Eigen::SparseMatrix<double> Dz;
  309. Eigen::SparseMatrix<double> MDx = sqrt_M.asDiagonal() * Dx;
  310. Eigen::SparseMatrix<double> MDy = sqrt_M.asDiagonal() * Dy;
  311. igl::slim_buildA(MDx, MDy, Dz, W, IJV);
  312. Am.setFromTriplets(IJV.begin(), IJV.end());
  313. Am.makeCompressed();
  314. }
  315. IGL_INLINE void buildRhs(const Eigen::VectorXd &sqrt_M,
  316. const Eigen::MatrixXd &W,
  317. const Eigen::MatrixXd &Ri,
  318. Eigen::VectorXd &f_rhs)
  319. {
  320. const int dim = (W.cols() == 4) ? 2 : 3;
  321. const int f_n = W.rows();
  322. f_rhs.resize(dim * dim * f_n);
  323. for (int i = 0; i < f_n; i++)
  324. {
  325. auto sqrt_area = sqrt_M(i);
  326. f_rhs(i + 0 * f_n) = sqrt_area * (W(i, 0) * Ri(i, 0) + W(i, 1) * Ri(i, 1));
  327. f_rhs(i + 1 * f_n) = sqrt_area * (W(i, 0) * Ri(i, 2) + W(i, 1) * Ri(i, 3));
  328. f_rhs(i + 2 * f_n) = sqrt_area * (W(i, 2) * Ri(i, 0) + W(i, 3) * Ri(i, 1));
  329. f_rhs(i + 3 * f_n) = sqrt_area * (W(i, 2) * Ri(i, 2) + W(i, 3) * Ri(i, 3));
  330. }
  331. }
  332. IGL_INLINE void get_complement(const Eigen::VectorXi &bnd_ids, int v_n, Eigen::ArrayXi &unknown_ids)
  333. { // get the complement of bnd_ids.
  334. int assign = 0, i = 0;
  335. for (int get = 0; i < v_n && get < bnd_ids.size(); i++)
  336. {
  337. if (bnd_ids(get) == i)
  338. get++;
  339. else
  340. unknown_ids(assign++) = i;
  341. }
  342. while (i < v_n)
  343. unknown_ids(assign++) = i++;
  344. assert(assign + bnd_ids.size() == v_n);
  345. }
  346. IGL_INLINE void build_surface_linear_system(const SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  347. {
  348. using namespace Eigen;
  349. using namespace std;
  350. const int v_n = s.v_num - (s.frame_ids.size());
  351. const int dim = s.dim;
  352. const int f_n = s.mf_num;
  353. // to get the complete A
  354. Eigen::VectorXd sqrtM = s.m_M.array().sqrt();
  355. Eigen::SparseMatrix<double> A(dim * dim * f_n, dim * v_n);
  356. auto decoy_Dx_m = s.Dx_m;
  357. decoy_Dx_m.conservativeResize(s.W_m.rows(), v_n);
  358. auto decoy_Dy_m = s.Dy_m;
  359. decoy_Dy_m.conservativeResize(s.W_m.rows(), v_n);
  360. buildAm(sqrtM, decoy_Dx_m, decoy_Dy_m, s.W_m, A);
  361. const VectorXi &bnd_ids = s.fixed_ids;
  362. auto bnd_n = bnd_ids.size();
  363. if (bnd_n == 0)
  364. {
  365. Eigen::SparseMatrix<double> At = A.transpose();
  366. At.makeCompressed();
  367. Eigen::SparseMatrix<double> id_m(At.rows(), At.rows());
  368. id_m.setIdentity();
  369. L = At * A;
  370. Eigen::VectorXd frhs;
  371. buildRhs(sqrtM, s.W_m, s.Ri_m, frhs);
  372. rhs = At * frhs;
  373. }
  374. else
  375. {
  376. MatrixXd bnd_pos = s.w_uv(bnd_ids, igl::placeholders::all);
  377. ArrayXi known_ids(bnd_ids.size() * dim);
  378. ArrayXi unknown_ids((v_n - bnd_ids.rows()) * dim);
  379. get_complement(bnd_ids, v_n, unknown_ids);
  380. VectorXd known_pos(bnd_ids.size() * dim);
  381. for (int d = 0; d < dim; d++)
  382. {
  383. auto n_b = bnd_ids.rows();
  384. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  385. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  386. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  387. unknown_ids.topRows(v_n - n_b) + d * v_n;
  388. }
  389. Eigen::SparseMatrix<double> Au, Ae;
  390. igl::slice(A, unknown_ids, 2, Au);
  391. igl::slice(A, known_ids, 2, Ae);
  392. Eigen::SparseMatrix<double> Aut = Au.transpose();
  393. Aut.makeCompressed();
  394. L = Aut * Au;
  395. Eigen::VectorXd frhs;
  396. buildRhs(sqrtM, s.W_m, s.Ri_m, frhs);
  397. rhs = Aut * (frhs - Ae * known_pos);
  398. }
  399. // add soft constraints.
  400. for (auto const &x : s.soft_cons)
  401. {
  402. int v_idx = x.first;
  403. for (int d = 0; d < dim; d++)
  404. {
  405. rhs(d * (v_n) + v_idx) += s.soft_const_p * x.second(d); // rhs
  406. L.coeffRef(d * v_n + v_idx,
  407. d * v_n + v_idx) += s.soft_const_p; // diagonal
  408. }
  409. }
  410. }
  411. IGL_INLINE void build_scaffold_linear_system(const SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  412. {
  413. using namespace Eigen;
  414. const int f_n = s.W_s.rows();
  415. const int v_n = s.Dx_s.cols();
  416. const int dim = s.dim;
  417. Eigen::VectorXd sqrtM = s.s_M.array().sqrt();
  418. Eigen::SparseMatrix<double> A(dim * dim * f_n, dim * v_n);
  419. buildAm(sqrtM, s.Dx_s, s.Dy_s, s.W_s, A);
  420. VectorXi bnd_ids;
  421. igl::cat(1, s.fixed_ids, s.frame_ids, bnd_ids);
  422. auto bnd_n = bnd_ids.size();
  423. IGL_ASSERT(bnd_n > 0);
  424. MatrixXd bnd_pos = s.w_uv(bnd_ids, igl::placeholders::all);
  425. ArrayXi known_ids(bnd_ids.size() * dim);
  426. ArrayXi unknown_ids((v_n - bnd_ids.rows()) * dim);
  427. get_complement(bnd_ids, v_n, unknown_ids);
  428. VectorXd known_pos(bnd_ids.size() * dim);
  429. for (int d = 0; d < dim; d++)
  430. {
  431. auto n_b = bnd_ids.rows();
  432. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  433. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  434. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  435. unknown_ids.topRows(v_n - n_b) + d * v_n;
  436. }
  437. Eigen::VectorXd sqrt_M = s.s_M.array().sqrt();
  438. // manual slicing for A(:, unknown/known)'
  439. Eigen::SparseMatrix<double> Au, Ae;
  440. igl::slice(A, unknown_ids, 2, Au);
  441. igl::slice(A, known_ids, 2, Ae);
  442. Eigen::SparseMatrix<double> Aut = Au.transpose();
  443. Aut.makeCompressed();
  444. L = Aut * Au;
  445. Eigen::VectorXd frhs;
  446. buildRhs(sqrtM, s.W_s, s.Ri_s, frhs);
  447. rhs = Aut * (frhs - Ae * known_pos);
  448. }
  449. IGL_INLINE void build_weighted_arap_system(SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  450. {
  451. // fixed frame solving:
  452. // x_e as the fixed frame, x_u for unknowns (mesh + unknown scaffold)
  453. // min ||(A_u*x_u + A_e*x_e) - b||^2
  454. // => A_u'*A_u*x_u = Au'* (b - A_e*x_e) := Au'* b_u
  455. //
  456. // separate matrix build:
  457. // min ||A_m x_m - b_m||^2 + ||A_s x_all - b_s||^2 + soft + proximal
  458. // First change dimension of A_m to fit for x_all
  459. // (Not just at the end, since x_all is flattened along dimensions)
  460. // L = A_m'*A_m + A_s'*A_s + soft + proximal
  461. // rhs = A_m'* b_m + A_s' * b_s + soft + proximal
  462. //
  463. Eigen::SparseMatrix<double> L_m, L_s;
  464. Eigen::VectorXd rhs_m, rhs_s;
  465. build_surface_linear_system(s, L_m, rhs_m); // complete Am, with soft
  466. build_scaffold_linear_system(s, L_s, rhs_s); // complete As, without proximal
  467. L = L_m + L_s;
  468. rhs = rhs_m + rhs_s;
  469. L.makeCompressed();
  470. }
  471. IGL_INLINE void solve_weighted_arap(SCAFData &s, Eigen::MatrixXd &uv)
  472. {
  473. using namespace Eigen;
  474. using namespace std;
  475. int dim = s.dim;
  476. igl::Timer timer;
  477. timer.start();
  478. VectorXi bnd_ids;
  479. igl::cat(1, s.fixed_ids, s.frame_ids, bnd_ids);
  480. const auto v_n = s.v_num;
  481. const auto bnd_n = bnd_ids.size();
  482. assert(bnd_n > 0);
  483. MatrixXd bnd_pos = s.w_uv(bnd_ids, igl::placeholders::all);
  484. ArrayXi known_ids(bnd_n * dim);
  485. ArrayXi unknown_ids((v_n - bnd_n) * dim);
  486. get_complement(bnd_ids, v_n, unknown_ids);
  487. VectorXd known_pos(bnd_ids.size() * dim);
  488. for (int d = 0; d < dim; d++)
  489. {
  490. auto n_b = bnd_ids.rows();
  491. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  492. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  493. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  494. unknown_ids.topRows(v_n - n_b) + d * v_n;
  495. }
  496. Eigen::SparseMatrix<double> L;
  497. Eigen::VectorXd rhs;
  498. build_weighted_arap_system(s, L, rhs);
  499. Eigen::VectorXd unknown_Uc((v_n - s.frame_ids.size() - s.fixed_ids.size()) * dim), Uc(dim * v_n);
  500. SimplicialLDLT<Eigen::SparseMatrix<double>> solver;
  501. unknown_Uc = solver.compute(L).solve(rhs);
  502. Uc(unknown_ids) = unknown_Uc;
  503. Uc(known_ids) = known_pos;
  504. uv = Map<Matrix<double, -1, -1, Eigen::ColMajor>>(Uc.data(), v_n, dim);
  505. }
  506. IGL_INLINE double perform_iteration(SCAFData &s)
  507. {
  508. Eigen::MatrixXd V_out = s.w_uv;
  509. compute_jacobians(s, V_out, true);
  510. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_m, s.slim_energy, 0, s.W_m, s.Ri_m);
  511. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_s, s.scaf_energy, 0, s.W_s, s.Ri_s);
  512. solve_weighted_arap(s, V_out);
  513. std::function<double(Eigen::MatrixXd&)> whole_E = [&s](Eigen::MatrixXd &uv) { return compute_energy(s, uv, true); };
  514. Eigen::MatrixXi w_T;
  515. if (s.m_T.cols() == s.s_T.cols())
  516. igl::cat(1, s.m_T, s.s_T, w_T);
  517. else
  518. w_T = s.s_T;
  519. return igl::flip_avoiding_line_search( w_T, s.w_uv, V_out, whole_E, -1) /
  520. s.mesh_measure;
  521. }
  522. }
  523. }
  524. }
  525. IGL_INLINE void igl::triangle::scaf_precompute(
  526. const Eigen::MatrixXd &V,
  527. const Eigen::MatrixXi &F,
  528. const Eigen::MatrixXd &V_init,
  529. igl::triangle::SCAFData &data,
  530. igl::MappingEnergyType slim_energy,
  531. Eigen::VectorXi &b,
  532. Eigen::MatrixXd &bc,
  533. double soft_p)
  534. {
  535. Eigen::MatrixXd CN;
  536. Eigen::MatrixXi FN;
  537. igl::triangle::scaf::add_new_patch(data, V, F, Eigen::RowVector2d(0, 0), V_init);
  538. data.soft_const_p = soft_p;
  539. for (int i = 0; i < b.rows(); i++)
  540. data.soft_cons[b(i)] = bc.row(i);
  541. data.slim_energy = slim_energy;
  542. auto &s = data;
  543. if (!data.has_pre_calc)
  544. {
  545. int dim = s.dim;
  546. Eigen::MatrixXd F1, F2, F3;
  547. igl::local_basis(s.m_V, s.m_T, F1, F2, F3);
  548. auto face_proj = [](Eigen::MatrixXd& F){
  549. std::vector<Eigen::Triplet<double> >IJV;
  550. int f_num = F.rows();
  551. for(int i=0; i<F.rows(); i++) {
  552. IJV.push_back(Eigen::Triplet<double>(i, i, F(i,0)));
  553. IJV.push_back(Eigen::Triplet<double>(i, i+f_num, F(i,1)));
  554. IJV.push_back(Eigen::Triplet<double>(i, i+2*f_num, F(i,2)));
  555. }
  556. Eigen::SparseMatrix<double> P(f_num, 3*f_num);
  557. P.setFromTriplets(IJV.begin(), IJV.end());
  558. return P;
  559. };
  560. Eigen::SparseMatrix<double> G;
  561. igl::grad(s.m_V, s.m_T, G);
  562. s.Dx_m = face_proj(F1) * G;
  563. s.Dy_m = face_proj(F2) * G;
  564. igl::triangle::scaf::compute_scaffold_gradient_matrix(s, s.Dx_s, s.Dy_s);
  565. s.Dx_m.makeCompressed();
  566. s.Dy_m.makeCompressed();
  567. s.Ri_m = Eigen::MatrixXd::Zero(s.Dx_m.rows(), dim * dim);
  568. s.Ji_m.resize(s.Dx_m.rows(), dim * dim);
  569. s.W_m.resize(s.Dx_m.rows(), dim * dim);
  570. s.Dx_s.makeCompressed();
  571. s.Dy_s.makeCompressed();
  572. s.Ri_s = Eigen::MatrixXd::Zero(s.Dx_s.rows(), dim * dim);
  573. s.Ji_s.resize(s.Dx_s.rows(), dim * dim);
  574. s.W_s.resize(s.Dx_s.rows(), dim * dim);
  575. data.has_pre_calc = true;
  576. }
  577. }
  578. IGL_INLINE Eigen::MatrixXd igl::triangle::scaf_solve(igl::triangle::SCAFData &s, int iter_num)
  579. {
  580. using namespace std;
  581. using namespace Eigen;
  582. s.energy = igl::triangle::scaf::compute_energy(s, s.w_uv, false) / s.mesh_measure;
  583. for (int it = 0; it < iter_num; it++)
  584. {
  585. s.total_energy = igl::triangle::scaf::compute_energy(s, s.w_uv, true) / s.mesh_measure;
  586. s.rect_frame_V = Eigen::MatrixXd();
  587. igl::triangle::scaf::mesh_improve(s);
  588. double new_weight = s.mesh_measure * s.energy / (s.sf_num * 100);
  589. s.scaffold_factor = new_weight;
  590. igl::triangle::scaf::update_scaffold(s);
  591. s.total_energy = igl::triangle::scaf::perform_iteration(s);
  592. s.energy =
  593. igl::triangle::scaf::compute_energy(s, s.w_uv, false) / s.mesh_measure;
  594. }
  595. return s.w_uv.topRows(s.mv_num);
  596. }
  597. IGL_INLINE void igl::triangle::scaf_system(igl::triangle::SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  598. {
  599. s.energy = igl::triangle::scaf::compute_energy(s, s.w_uv, false) / s.mesh_measure;
  600. s.total_energy = igl::triangle::scaf::compute_energy(s, s.w_uv, true) / s.mesh_measure;
  601. s.rect_frame_V = Eigen::MatrixXd();
  602. igl::triangle::scaf::mesh_improve(s);
  603. double new_weight = s.mesh_measure * s.energy / (s.sf_num * 100);
  604. s.scaffold_factor = new_weight;
  605. igl::triangle::scaf::update_scaffold(s);
  606. igl::triangle::scaf::compute_jacobians(s, s.w_uv, true);
  607. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_m, s.slim_energy, 0, s.W_m, s.Ri_m);
  608. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_s, s.scaf_energy, 0, s.W_s, s.Ri_s);
  609. igl::triangle::scaf::build_weighted_arap_system(s, L, rhs);
  610. }
  611. #ifdef IGL_STATIC_LIBRARY
  612. #endif