arap_linear_block.cpp 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2013 Alec Jacobson <[email protected]>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "arap_linear_block.h"
  9. #include "verbose.h"
  10. #include "cotmatrix_entries.h"
  11. #include <Eigen/Dense>
  12. template <typename MatV, typename MatF, typename MatK>
  13. IGL_INLINE void igl::arap_linear_block(
  14. const MatV & V,
  15. const MatF & F,
  16. const int d,
  17. const igl::ARAPEnergyType energy,
  18. MatK & Kd)
  19. {
  20. switch(energy)
  21. {
  22. case ARAP_ENERGY_TYPE_SPOKES:
  23. return igl::arap_linear_block_spokes(V,F,d,Kd);
  24. break;
  25. case ARAP_ENERGY_TYPE_SPOKES_AND_RIMS:
  26. return igl::arap_linear_block_spokes_and_rims(V,F,d,Kd);
  27. break;
  28. case ARAP_ENERGY_TYPE_ELEMENTS:
  29. return igl::arap_linear_block_elements(V,F,d,Kd);
  30. break;
  31. default:
  32. verbose("Unsupported energy type: %d\n",energy);
  33. assert(false);
  34. }
  35. }
  36. template <typename MatV, typename MatF, typename MatK>
  37. IGL_INLINE void igl::arap_linear_block_spokes(
  38. const MatV & V,
  39. const MatF & F,
  40. const int d,
  41. MatK & Kd)
  42. {
  43. typedef typename MatK::Scalar Scalar;
  44. using namespace std;
  45. using namespace Eigen;
  46. // simplex size (3: triangles, 4: tetrahedra)
  47. int simplex_size = F.cols();
  48. // Number of elements
  49. int m = F.rows();
  50. // Temporary output
  51. Matrix<int,Dynamic,2> edges;
  52. Kd.resize(V.rows(), V.rows());
  53. vector<Triplet<Scalar> > Kd_IJV;
  54. if(simplex_size == 3)
  55. {
  56. // triangles
  57. Kd.reserve(7*V.rows());
  58. Kd_IJV.reserve(7*V.rows());
  59. edges.resize(3,2);
  60. edges <<
  61. 1,2,
  62. 2,0,
  63. 0,1;
  64. }else if(simplex_size == 4)
  65. {
  66. // tets
  67. Kd.reserve(17*V.rows());
  68. Kd_IJV.reserve(17*V.rows());
  69. edges.resize(6,2);
  70. edges <<
  71. 1,2,
  72. 2,0,
  73. 0,1,
  74. 3,0,
  75. 3,1,
  76. 3,2;
  77. }
  78. // gather cotangent weights
  79. Matrix<Scalar,Dynamic,Dynamic> C;
  80. cotmatrix_entries(V,F,C);
  81. // should have weights for each edge
  82. assert(C.cols() == edges.rows());
  83. // loop over elements
  84. for(int i = 0;i<m;i++)
  85. {
  86. // loop over edges of element
  87. for(int e = 0;e<edges.rows();e++)
  88. {
  89. int source = F(i,edges(e,0));
  90. int dest = F(i,edges(e,1));
  91. double v = 0.5*C(i,e)*(V(source,d)-V(dest,d));
  92. Kd_IJV.push_back(Triplet<Scalar>(source,dest,v));
  93. Kd_IJV.push_back(Triplet<Scalar>(dest,source,-v));
  94. Kd_IJV.push_back(Triplet<Scalar>(source,source,v));
  95. Kd_IJV.push_back(Triplet<Scalar>(dest,dest,-v));
  96. }
  97. }
  98. Kd.setFromTriplets(Kd_IJV.begin(),Kd_IJV.end());
  99. Kd.makeCompressed();
  100. }
  101. template <typename MatV, typename MatF, typename MatK>
  102. IGL_INLINE void igl::arap_linear_block_spokes_and_rims(
  103. const MatV & V,
  104. const MatF & F,
  105. const int d,
  106. MatK & Kd)
  107. {
  108. typedef typename MatK::Scalar Scalar;
  109. using namespace std;
  110. using namespace Eigen;
  111. // simplex size (3: triangles, 4: tetrahedra)
  112. int simplex_size = F.cols();
  113. // Number of elements
  114. int m = F.rows();
  115. // Temporary output
  116. Kd.resize(V.rows(), V.rows());
  117. vector<Triplet<Scalar> > Kd_IJV;
  118. Matrix<int,Dynamic,2> edges;
  119. if(simplex_size == 3)
  120. {
  121. // triangles
  122. Kd.reserve(7*V.rows());
  123. Kd_IJV.reserve(7*V.rows());
  124. edges.resize(3,2);
  125. edges <<
  126. 1,2,
  127. 2,0,
  128. 0,1;
  129. }else if(simplex_size == 4)
  130. {
  131. // tets
  132. Kd.reserve(17*V.rows());
  133. Kd_IJV.reserve(17*V.rows());
  134. edges.resize(6,2);
  135. edges <<
  136. 1,2,
  137. 2,0,
  138. 0,1,
  139. 3,0,
  140. 3,1,
  141. 3,2;
  142. // Not implemented yet for tets
  143. assert(false);
  144. }
  145. // gather cotangent weights
  146. Matrix<Scalar,Dynamic,Dynamic> C;
  147. cotmatrix_entries(V,F,C);
  148. // should have weights for each edge
  149. assert(C.cols() == edges.rows());
  150. // loop over elements
  151. for(int i = 0;i<m;i++)
  152. {
  153. // loop over edges of element
  154. for(int e = 0;e<edges.rows();e++)
  155. {
  156. int source = F(i,edges(e,0));
  157. int dest = F(i,edges(e,1));
  158. double v = C(i,e)*(V(source,d)-V(dest,d))/3.0;
  159. // loop over edges again
  160. for(int f = 0;f<edges.rows();f++)
  161. {
  162. int Rs = F(i,edges(f,0));
  163. int Rd = F(i,edges(f,1));
  164. if(Rs == source && Rd == dest)
  165. {
  166. Kd_IJV.push_back(Triplet<Scalar>(Rs,Rd,v));
  167. Kd_IJV.push_back(Triplet<Scalar>(Rd,Rs,-v));
  168. }else if(Rd == source)
  169. {
  170. Kd_IJV.push_back(Triplet<Scalar>(Rd,Rs,v));
  171. }else if(Rs == dest)
  172. {
  173. Kd_IJV.push_back(Triplet<Scalar>(Rs,Rd,-v));
  174. }
  175. }
  176. Kd_IJV.push_back(Triplet<Scalar>(source,source,v));
  177. Kd_IJV.push_back(Triplet<Scalar>(dest,dest,-v));
  178. }
  179. }
  180. Kd.setFromTriplets(Kd_IJV.begin(),Kd_IJV.end());
  181. Kd.makeCompressed();
  182. }
  183. template <typename MatV, typename MatF, typename MatK>
  184. IGL_INLINE void igl::arap_linear_block_elements(
  185. const MatV & V,
  186. const MatF & F,
  187. const int d,
  188. MatK & Kd)
  189. {
  190. typedef typename MatK::Scalar Scalar;
  191. using namespace std;
  192. using namespace Eigen;
  193. // simplex size (3: triangles, 4: tetrahedra)
  194. int simplex_size = F.cols();
  195. // Number of elements
  196. int m = F.rows();
  197. // Temporary output
  198. Kd.resize(V.rows(), F.rows());
  199. vector<Triplet<Scalar> > Kd_IJV;
  200. Matrix<int,Dynamic,2> edges;
  201. if(simplex_size == 3)
  202. {
  203. // triangles
  204. Kd.reserve(7*V.rows());
  205. Kd_IJV.reserve(7*V.rows());
  206. edges.resize(3,2);
  207. edges <<
  208. 1,2,
  209. 2,0,
  210. 0,1;
  211. }else if(simplex_size == 4)
  212. {
  213. // tets
  214. Kd.reserve(17*V.rows());
  215. Kd_IJV.reserve(17*V.rows());
  216. edges.resize(6,2);
  217. edges <<
  218. 1,2,
  219. 2,0,
  220. 0,1,
  221. 3,0,
  222. 3,1,
  223. 3,2;
  224. }
  225. // gather cotangent weights
  226. Matrix<Scalar,Dynamic,Dynamic> C;
  227. cotmatrix_entries(V,F,C);
  228. // should have weights for each edge
  229. assert(C.cols() == edges.rows());
  230. // loop over elements
  231. for(int i = 0;i<m;i++)
  232. {
  233. // loop over edges of element
  234. for(int e = 0;e<edges.rows();e++)
  235. {
  236. int source = F(i,edges(e,0));
  237. int dest = F(i,edges(e,1));
  238. double v = C(i,e)*(V(source,d)-V(dest,d));
  239. Kd_IJV.push_back(Triplet<Scalar>(source,i,v));
  240. Kd_IJV.push_back(Triplet<Scalar>(dest,i,-v));
  241. }
  242. }
  243. Kd.setFromTriplets(Kd_IJV.begin(),Kd_IJV.end());
  244. Kd.makeCompressed();
  245. }
  246. #ifdef IGL_STATIC_LIBRARY
  247. // Explicit template instantiation
  248. template void igl::arap_linear_block<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >, Eigen::SparseMatrix<double, 0, int> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, int, igl::ARAPEnergyType, Eigen::SparseMatrix<double, 0, int>&);
  249. template void igl::arap_linear_block<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::SparseMatrix<double, 0, int> >(Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, int, igl::ARAPEnergyType, Eigen::SparseMatrix<double, 0, int>&);
  250. #endif