| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <[email protected]>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef IGL_MOSEK_MOSEK_QUADPROG_H
- #define IGL_MOSEK_MOSEK_QUADPROG_H
- #include "../igl_inline.h"
- #include <vector>
- #include <map>
- #include <mosek.h>
- #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
- #include <Eigen/Dense>
- #include <Eigen/Sparse>
- namespace igl
- {
- namespace mosek
- {
- /// Structure for holding MOSEK data for solving a quadratic program
- struct MosekData
- {
- /// Integer parameters
- std::map<MSKiparame,int> intparam;
- /// Double parameters
- std::map<MSKdparame,double> douparam;
- /// Default values
- IGL_INLINE MosekData();
- };
- // Solve a convex quadratic optimization problem with linear and constant
- // bounds. Given in the form:
- //
- // Minimize: ½ * xT * Q⁰ * x + cT * x + cf
- //
- // Subject to: lc ≤ Ax ≤ uc
- // lx ≤ x ≤ ux
- //
- // where we are trying to find the optimal vector of values x.
- //
- // \note Q⁰ must be symmetric
- //
- // \note Because of how MOSEK accepts different parts of the system, Q
- // should be stored in IJV (aka Coordinate) format and should only include
- // entries in the lower triangle. A should be stored in Column compressed
- // (aka Harwell Boeing) format. As described:
- // http://netlib.org/linalg/html_templates/node92.html
- // or
- // http://en.wikipedia.org/wiki/Sparse_matrix
- // #Compressed_sparse_column_.28CSC_or_CCS.29
- //
- //
- // @tparam Index type for index variables
- // @tparam Scalar type for floating point variables (gets cast to double?)
- // @param[in] n number of variables, i.e. size of x
- // @param[in] Qi vector of qnnz row indices of non-zeros in LOWER TRIANGLE ONLY of
- // Q⁰
- // @param[in] Qj vector of qnnz column indices of non-zeros in LOWER TRIANGLE ONLY
- // of Q⁰
- // @param[in] Qv vector of qnnz values of non-zeros in LOWER TRIANGLE ONLY of Q⁰,
- // such that:
- //
- // Q⁰(Qi[k],Qj[k]) = Qv[k] for k ∈ [0,Qnnz-1], where Qnnz is the
- //
- // number of non-zeros in Q⁰
- // @param[in] c (optional) vector of n values of c, transpose of coefficient row
- // vector of linear terms, EMPTY means c == 0
- // @param[in] cf (ignored) value of constant term in objective, 0 means cf == 0, so
- // optional only in the sense that it is mandatory
- // @param[in] m number of constraints, therefore also number of rows in linear
- // constraint coefficient matrix A, and in linear constraint bound
- // vectors lc and uc
- // @param[in] Av vector of non-zero values of A, in column compressed order
- // @param[in] Ari vector of row indices corresponding to non-zero values of A,
- // @param[in] Acp vector of indices into Ari and Av of the first entry for each
- // column of A, size(Acp) = (# columns of A) + 1 = n + 1
- // @param[in] lc vector of m linear constraint lower bounds
- // @param[in] uc vector of m linear constraint upper bounds
- // @param[in] lx vector of n constant lower bounds
- // @param[in] ux vector of n constant upper bounds
- // @param[out] x vector of size n to hold output of optimization
- // @return true only if optimization was successful with no errors
- //
- // \note All indices are 0-based
- template <typename Index, typename Scalar>
- IGL_INLINE bool mosek_quadprog(
- const Index n,
- /* mosek won't allow this to be const*/ std::vector<Index> & Qi,
- /* mosek won't allow this to be const*/ std::vector<Index> & Qj,
- /* mosek won't allow this to be const*/ std::vector<Scalar> & Qv,
- const std::vector<Scalar> & c,
- const Scalar cf,
- const Index m,
- /* mosek won't allow this to be const*/ std::vector<Scalar> & Av,
- /* mosek won't allow this to be const*/ std::vector<Index> & Ari,
- const std::vector<Index> & Acp,
- const std::vector<Scalar> & lc,
- const std::vector<Scalar> & uc,
- const std::vector<Scalar> & lx,
- const std::vector<Scalar> & ux,
- MosekData & mosek_data,
- std::vector<Scalar> & x);
- /// \overload
- ///
- /// @param[in] Q n by n square quadratic coefficients matrix **only lower triangle
- /// is used**.
- /// @param[in] c n-long vector of linear coefficients
- /// @param[in] cf constant coefficient
- /// @param[in] A m by n square linear coefficienst matrix of inequality constraints
- /// @param[in] lc m-long vector of lower bounds for linear inequality constraints
- /// @param[in] uc m-long vector of upper bounds for linear inequality constraints
- /// @param[in] lx n-long vector of lower bounds
- /// @param[in] ux n-long vector of upper bounds
- /// @param[in] mosek_data parameters struct
- /// @param[out] x n-long solution vector
- /// @return true only if optimization finishes without error
- ///
- IGL_INLINE bool mosek_quadprog(
- const Eigen::SparseMatrix<double> & Q,
- const Eigen::VectorXd & c,
- const double cf,
- const Eigen::SparseMatrix<double> & A,
- const Eigen::VectorXd & lc,
- const Eigen::VectorXd & uc,
- const Eigen::VectorXd & lx,
- const Eigen::VectorXd & ux,
- MosekData & mosek_data,
- Eigen::VectorXd & x);
- }
- }
- #ifndef IGL_STATIC_LIBRARY
- # include "mosek_quadprog.cpp"
- #endif
- #endif
|