| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2023 Alec Jacobson <[email protected]>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "isolines_intrinsic.h"
- #include "edge_crossings.h"
- #include "cat.h"
- #include "unique_edge_map.h"
- #ifndef NDEBUG
- # include "is_edge_manifold.h"
- # include "is_vertex_manifold.h"
- #endif
- #include <unordered_map>
- #include <vector>
- template <
- typename DerivedF,
- typename DerivedS,
- typename Derivedvals,
- typename DerivediB,
- typename DerivediFI,
- typename DerivediE,
- typename DerivedI>
- void igl::isolines_intrinsic(
- const Eigen::MatrixBase<DerivedF> & F,
- const Eigen::MatrixBase<DerivedS> & S,
- const Eigen::MatrixBase<Derivedvals> & vals,
- Eigen::PlainObjectBase<DerivediB> & iB,
- Eigen::PlainObjectBase<DerivediFI> & iFI,
- Eigen::PlainObjectBase<DerivediE> & iE,
- Eigen::PlainObjectBase<DerivedI> & I)
- {
- using Index = typename DerivedF::Scalar;
- Eigen::Matrix<Index,Eigen::Dynamic,Eigen::Dynamic> uE;
- Eigen::Vector<Index,Eigen::Dynamic> EMAP,uEC,uEE;
- {
- Eigen::Matrix<Index,Eigen::Dynamic,Eigen::Dynamic> E;
- igl::unique_edge_map(F,E,uE,EMAP,uEC,uEE);
- }
- {
- std::vector<DerivediB> viB(vals.size());
- std::vector<DerivediFI> viFI(vals.size());
- std::vector<DerivediE> viE(vals.size());
- std::vector<DerivedI> vI(vals.size());
- int num_vertices = 0;
- for(int j = 0;j<vals.size();j++)
- {
- isolines_intrinsic(F,S,uE,EMAP,uEC,uEE,vals(j),viB[j],viFI[j],viE[j]);
- viE[j].array() += num_vertices;
- num_vertices += viB[j].rows();
- vI[j] = DerivedI::Constant(viE[j].rows(),j);
- }
- igl::cat(1,viB,iB);
- igl::cat(1,viFI,iFI);
- igl::cat(1,viE,iE);
- igl::cat(1,vI,I);
- }
- }
- template <
- typename DerivedF,
- typename DerivedS,
- typename DeriveduE,
- typename DerivedEMAP,
- typename DeriveduEC,
- typename DeriveduEE,
- typename DerivediB,
- typename DerivediFI,
- typename DerivediE>
- void igl::isolines_intrinsic(
- const Eigen::MatrixBase<DerivedF> & F,
- const Eigen::MatrixBase<DerivedS> & S,
- const Eigen::MatrixBase<DeriveduE> & uE,
- const Eigen::MatrixBase<DerivedEMAP> & EMAP,
- const Eigen::MatrixBase<DeriveduEC> & uEC,
- const Eigen::MatrixBase<DeriveduEE> & uEE,
- const typename DerivedS::Scalar val,
- Eigen::PlainObjectBase<DerivediB> & iB,
- Eigen::PlainObjectBase<DerivediFI> & iFI,
- Eigen::PlainObjectBase<DerivediE> & iE)
- {
- using Scalar = typename DerivedS::Scalar;
- std::unordered_map<int,int> uE2I;
- Eigen::Matrix<Scalar,Eigen::Dynamic,1> T;
- igl::edge_crossings(uE,S,val,uE2I,T);
- iB.resize(uE2I.size(),F.cols());
- iFI.resize(uE2I.size());
- Eigen::VectorXi U(uE2I.size());
- for(auto & pair : uE2I)
- {
- const int u = pair.first;
- const int w = pair.second;
- // first face incident on uE(u,:)
- const int e = uEE(uEC(u));
- const int f = e % F.rows();
- const int k = e / F.rows();
- const bool flip = uE(u,0) != F(f,(k+1)%3);
- const double t = T(w);
- iB(w,k) = 0;
- iB(w,(k+1)%3) = flip? t:1-t;
- iB(w,(k+2)%3) = flip?1-t:t;
- iFI(w) = f;
- U(w) = u;
- }
-
-
- // Vertex crossings
- std::unordered_map<int,int> V2I;
- {
- const auto add_vertex_crossing = [&iB,&iFI](const int k, const int i, const int j)
- {
- if(k >= iB.rows())
- {
- iB.conservativeResize(2*iB.rows()+1,Eigen::NoChange);
- iFI.conservativeResize(2*iFI.rows()+1,Eigen::NoChange);
- }
- iFI(k) = i;
- iB.row(k) << 0,0,0;
- iB(k,j) = 1;
- };
- int k = iB.rows();
- for(int i = 0;i<F.rows();i++)
- {
- for(int j = 0;j<3;j++)
- {
- const int v = F(i,j);
- if(S(v) == val)
- {
- if(V2I.find(v) == V2I.end())
- {
- V2I[v] = k;
- add_vertex_crossing(k++,i,j);
- }
- }
- }
- }
- iB.conservativeResize(k,Eigen::NoChange);
- iFI.conservativeResize(k,Eigen::NoChange);
- }
- iE.resize(uE2I.size(),2);
- const auto set_row = [&iE](const int k, const int i, const int j)
- {
- if(k >= iE.rows())
- {
- iE.conservativeResize(2*iE.rows()+1,Eigen::NoChange);
- }
- iE.row(k) << i,j;
- };
- {
- int r = 0;
- for(int f = 0;f < F.rows();f++)
- {
- // find first crossing edge
- int i;
- for(i = 0;i<3;i++)
- {
- if(uE2I.find(EMAP(f+F.rows()*i)) != uE2I.end())
- {
- break;
- }
- }
- int j;
- for(j = i+1;j<3;j++)
- {
- if(uE2I.find(EMAP(f+F.rows()*j)) != uE2I.end())
- {
- break;
- }
- }
- if(j<3)
- {
- // Connect two edge crossings.
- // other vertex
- const int k = 3-i-j;
- const int wi = uE2I[EMAP(f+F.rows()*i)];
- const int wj = uE2I[EMAP(f+F.rows()*j)];
- // flip orientation based on triangle gradient
- Scalar SFfk = S(F(f,k));
- bool flip = SFfk < val;
- flip = k%2? !flip:flip;
- if(flip)
- {
- set_row(r++,wi,wj);
- }else
- {
- set_row(r++,wj,wi);
- }
- }else if(i<3)
- {
- // The only valid vertex crossing is the opposite vertex
- const int v = F(f,i);
- // Is it a crossing?
- assert(V2I.find(v) != V2I.end());
- //if(V2I.find(v) != V2I.end())
- {
- const int wv = V2I[v];
- const int wi = uE2I[EMAP(f+F.rows()*i)];
- const bool flip = S(F(f,(i+1)%3)) > val;
- if(flip)
- {
- set_row(r++,wi,wv);
- }else
- {
- set_row(r++,wv,wi);
- }
- }
- }else
- {
- // Could have 2 vertex crossings. We're only interested if there're exactly two and if the other vertex is "above".
- int i = 0;
- for(i = 0;i<3;i++)
- {
- if(S(F(f,i)) == val)
- {
- break;
- }
- }
- int j;
- for(j = i+1;j<3;j++)
- {
- if(S(F(f,j)) == val)
- {
- break;
- }
- }
- if(j<3)
- {
- // check if the third is a crossing.
- const int k = 3-i-j;
- // Triangle is constant on the val. Skip.
- if(S(F(f,k)) == val){ continue; }
- // Is this a boundary edge?
- const int u = EMAP(f+F.rows()*k);
- const int count = uEC(u+1)-uEC(u);
- if( count == 1 || S(F(f,k)) > val)
- {
- const int wi = V2I[F(f,i)];
- const int wj = V2I[F(f,j)];
- bool flip = S(F(f,k)) < val;
- flip = k%2 ? !flip:flip;
- if(flip)
- {
- set_row(r++,wj,wi);
- }else
- {
- set_row(r++,wi,wj);
- }
- }
- }
- }
- }
- iE.conservativeResize(r,Eigen::NoChange);
- }
- #ifdef IGL_ISOLINES_INTRINSIC_DEBUG
- if(igl::is_vertex_manifold(F) && igl::is_edge_manifold(F))
- {
- // Check that every vertex has one in one out
- Eigen::VectorXi in_count = Eigen::VectorXi::Zero(iB.rows());
- Eigen::VectorXi out_count = Eigen::VectorXi::Zero(iB.rows());
- for(int e = 0;e<iE.rows();e++)
- {
- const int i = iE(e,0);
- out_count(i)++;
- const int j = iE(e,1);
- in_count(j)++;
- }
- for(int i = 0;i<iB.rows();i++)
- {
- assert(in_count(i) <= 1);
- assert(out_count(i) <= 1);
- }
- }
- #endif
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template instantiation
- // generated by autoexplicit.sh
- template void igl::isolines_intrinsic<Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
- #endif
|