| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <[email protected]>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- #include "kelvinlets.h"
- #include "PI.h"
- #include "parallel_for.h"
- namespace igl {
- // Performs the deformation of a single point based on the regularized
- // kelvinlets
- //
- // Inputs:
- // dt delta time used to calculate brush tip displacement
- // x dim-vector of point to be deformed
- // x0 dim-vector of brush tip
- // f dim-vector of brush force (translation)
- // F dim by dim matrix of brush force matrix (linear)
- // kp parameters for the kelvinlet brush like brush radius, scale etc
- // Returns:
- // X dim-vector of the new point x gets displaced to post deformation
- template<typename Derivedx,
- typename Derivedx0,
- typename Derivedf,
- typename DerivedF,
- typename Scalar>
- IGL_INLINE auto kelvinlet_evaluator(const Scalar dt,
- const Eigen::MatrixBase<Derivedx>& x,
- const Eigen::MatrixBase<Derivedx0>& x0,
- const Eigen::MatrixBase<Derivedf>& f,
- const Eigen::MatrixBase<DerivedF>& F,
- const igl::KelvinletParams<Scalar>& kp)
- -> Eigen::Matrix<Scalar, 3, 1>
- {
- static constexpr double POISSON_RATIO = 0.5;
- static constexpr double SHEAR_MODULUS = 1;
- static constexpr double a = 1 / (4 * igl::PI * SHEAR_MODULUS);
- static constexpr double b = a / (4 * (1 - POISSON_RATIO));
- static constexpr double c = 2 / (3 * a - 2 * b);
- const auto linearVelocity = f / c / kp.epsilon;
- const auto originAdjusted = x0 + linearVelocity * dt;
- const auto r = x - originAdjusted;
- const auto r_norm_sq = r.squaredNorm();
- std::function<Eigen::Matrix<Scalar, 3, 1>(const Scalar&)> kelvinlet;
- switch (kp.brushType) {
- case igl::BrushType::GRAB: {
- // Regularized Kelvinlets: Formula (6)
- kelvinlet = [&r, &f, &r_norm_sq](const Scalar& epsilon) {
- const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
- const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
- auto t1 = ((a - b) / r_epsilon) * f;
- auto t2 = ((b / r_epsilon_3) * r * r.transpose()) * f;
- auto t3 = ((a * epsilon * epsilon) / (2 * r_epsilon_3)) * f;
- return t1 + t2 + t3;
- };
- break;
- }
- case igl::BrushType::TWIST: {
- // Regularized Kelvinlets: Formula (15)
- kelvinlet = [&r, &F, &r_norm_sq](const Scalar& epsilon) {
- const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
- const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
- return -a *
- (1 / (r_epsilon_3) +
- 3 * epsilon * epsilon /
- (2 * r_epsilon_3 * r_epsilon * r_epsilon)) *
- F * r;
- };
- break;
- }
- case igl::BrushType::SCALE: {
- // Regularized Kelvinlets: Formula (16)
- kelvinlet = [&r, &F, &r_norm_sq](const Scalar& epsilon) {
- static constexpr auto b_compressible = a / 4; // assumes poisson ratio 0
- const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
- const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
- auto coeff =
- (2 * b_compressible - a) *
- (1 / (r_epsilon_3) +
- 3 * (epsilon * epsilon) / (2 * r_epsilon_3 * r_epsilon * r_epsilon));
- return coeff * F * r;
- };
- break;
- }
- case igl::BrushType::PINCH: {
- // Regularized Kelvinlets: Formula (17)
- kelvinlet = [&r, &F, &r_norm_sq, &kp](const Scalar& epsilon) {
- const auto r_epsilon = sqrt(r_norm_sq + kp.epsilon * kp.epsilon);
- const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
- auto t1 = ((2 * b - a) / r_epsilon_3) * F * r;
- auto t2_coeff = 3 / (2 * r_epsilon * r_epsilon * r_epsilon_3);
- auto t2 = t2_coeff * (2 * b * (r.transpose().dot(F * r)) * r +
- a * epsilon * epsilon * epsilon * F * r);
- return t1 - t2;
- };
- break;
- }
- }
- if (kp.scale == 1) {
- return kelvinlet(kp.ep[0]);
- } else if (kp.scale == 2) {
- // Regularized Kelvinlets: Formula (8)
- return (kelvinlet(kp.ep[0]) - kelvinlet(kp.ep[1])) * 10;
- }
- // Regularized Kelvinlets: Formula (10)
- return (kp.w[0] * kelvinlet(kp.ep[0]) + kp.w[1] * kelvinlet(kp.ep[1]) +
- kp.w[2] * kelvinlet(kp.ep[2])) *
- 20;
- };
- // Implements the Bogacki-Shrampine ODE Solver
- // https://en.wikipedia.org/wiki/Bogacki%E2%80%93Shampine_method
- //
- // It calculates the second and third order approximations which can be used to
- // estimate the error in the integration step
- //
- // Inputs:
- // t starting time
- // dt delta time used to calculate brush tip displacement
- // x dim-vector of point to be deformed
- // x0 dim-vector of brush tip
- // f dim-vector of brush force (translation)
- // F dim by dim matrix of brush force matrix (linear)
- // kp parameters for the kelvinlet brush like brush radius, scale etc
- // Outputs:
- // result dim vector holding the third order approximation result
- // error The euclidean distance between the second and third order
- // approximations
- template<typename Scalar,
- typename Derivedx,
- typename Derivedx0,
- typename Derivedf,
- typename DerivedF>
- IGL_INLINE void integrate(const Scalar t,
- const Scalar dt,
- const Eigen::MatrixBase<Derivedx>& x,
- const Eigen::MatrixBase<Derivedx0>& x0,
- const Eigen::MatrixBase<Derivedf>& f,
- const Eigen::MatrixBase<DerivedF>& F,
- const igl::KelvinletParams<Scalar>& kp,
- Eigen::MatrixBase<Derivedx>& result,
- Scalar& error)
- {
- constexpr Scalar a1 = 0;
- constexpr Scalar a2 = 1 / 2.0f;
- constexpr Scalar a3 = 3 / 4.0f;
- constexpr Scalar a4 = 1.0f;
- constexpr Scalar b21 = 1 / 2.0f;
- constexpr Scalar b31 = 0;
- constexpr Scalar b32 = 3 / 4.0f;
- constexpr Scalar b41 = 2 / 9.0f;
- constexpr Scalar b42 = 1 / 3.0f;
- constexpr Scalar b43 = 4 / 9.0f;
- constexpr Scalar c1 = 2 / 9.0f; // third order answer
- constexpr Scalar c2 = 1 / 3.0f;
- constexpr Scalar c3 = 4 / 9.0f;
- constexpr Scalar d1 = 7 / 24.0f; // second order answer
- constexpr Scalar d2 = 1 / 4.0f;
- constexpr Scalar d3 = 1 / 3.0f;
- constexpr Scalar d4 = 1 / 8.0f;
- auto k1 = dt * kelvinlet_evaluator(t + dt * a1, x, x0, f, F, kp);
- auto k2 = dt * kelvinlet_evaluator(t + dt * a2, x + k1 * b21, x0, f, F, kp);
- auto k3 = dt * kelvinlet_evaluator(
- t + dt * a3, x + k1 * b31 + k2 * b32, x0, f, F, kp);
- auto k4 =
- dt * kelvinlet_evaluator(
- t + dt * a4, x + k1 * b41 + k2 * b42 + k3 * b43, x0, f, F, kp);
- auto r1 = x + k1 * d1 + k2 * d2 + k3 * d3 + k4 * d4;
- auto r2 = x + k1 * c1 + k2 * c2 + k3 * c3;
- result = r2;
- error = (r2 - r1).norm() / dt;
- };
- template<typename DerivedV,
- typename Derivedx0,
- typename Derivedf,
- typename DerivedF,
- typename DerivedU>
- IGL_INLINE void kelvinlets(
- const Eigen::MatrixBase<DerivedV>& V,
- const Eigen::MatrixBase<Derivedx0>& x0,
- const Eigen::MatrixBase<Derivedf>& f,
- const Eigen::MatrixBase<DerivedF>& F,
- const KelvinletParams<typename DerivedV::Scalar>& params,
- Eigen::PlainObjectBase<DerivedU>& U)
- {
- using Scalar = typename DerivedV::Scalar;
- constexpr auto max_error = 0.001f;
- constexpr Scalar safety = 0.9;
- const auto calc_displacement = [&](const int index) {
- Scalar dt = 0.1;
- Scalar t = 0;
- Eigen::Matrix<Scalar, 3, 1> x = V.row(index).transpose();
- decltype(x) result;
- Scalar error;
- // taking smaller steps seems to prevents weird inside-out artifacts in the
- // final result. This implementation used an adaptive time step solver to
- // numerically integrate the ODEs
- while (t < 1) {
- dt = std::min(dt, 1 - t);
- integrate(t, dt, x, x0, f, F, params, result, error);
- auto new_dt = dt * safety * std::pow(max_error / error, 1 / 3.0);
- if (error <= max_error || dt <= 0.001) {
- x = result;
- t += dt;
- dt = new_dt;
- } else {
- dt = std::max(abs(new_dt - dt) < 0.001 ? dt / 2.f : new_dt, 0.001);
- }
- }
- U.row(index) = x.transpose();
- };
- const int n = V.rows();
- U.resize(n, V.cols());
- igl::parallel_for(n, calc_displacement, 1000);
- }
- }
- #ifdef IGL_STATIC_LIBRARY
- template void igl::kelvinlets<Eigen::Matrix<double, -1, -1, 0, -1, -1>,
- Eigen::Matrix<double, 3, 1, 0, 3, 1>,
- Eigen::Matrix<double, 3, 1, 0, 3, 1>,
- Eigen::Matrix<double, 3, 3, 0, 3, 3>,
- Eigen::Matrix<double, -1, -1, 0, -1, -1>>(
- Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1>> const&,
- Eigen::MatrixBase<Eigen::Matrix<double, 3, 1, 0, 3, 1>> const&,
- Eigen::MatrixBase<Eigen::Matrix<double, 3, 1, 0, 3, 1>> const&,
- Eigen::MatrixBase<Eigen::Matrix<double, 3, 3, 0, 3, 3>> const&,
- igl::KelvinletParams<double> const&,
- Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1>>&);
- #endif
|