| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2017 Daniele Panozzo <[email protected]>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef IGL_SPARSE_CACHED_H
- #define IGL_SPARSE_CACHED_H
- #include "igl_inline.h"
- #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
- #include <Eigen/Dense>
- #include <Eigen/Sparse>
- namespace igl
- {
- /// Build a sparse matrix from list of indices and values (I,J,V), similarly to
- /// the sparse function in matlab. Divides the construction in two phases, one
- /// for fixing the sparsity pattern, and one to populate it with values. Compared to
- /// igl::sparse, this version is slower for the first time (since it requires a
- /// precomputation), but faster to the subsequent evaluations.
- ///
- /// @param[in] I nnz vector of row indices of non zeros entries in X
- /// @param[in] J nnz vector of column indices of non zeros entries in X
- /// @param[out] data ?? vector of ??
- /// @param[out] X m by n matrix of type T whose entries are to be found
- ///
- /// #### Example:
- ///
- /// Eigen::SparseMatrix<double> A;
- /// std::vector<Eigen::Triplet<double> > IJV;
- /// slim_buildA(IJV);
- /// if (A.rows() == 0)
- /// {
- /// A = Eigen::SparseMatrix<double>(rows,cols);
- /// igl::sparse_cached_precompute(IJV,A_data,A);
- /// }
- /// else
- /// igl::sparse_cached(IJV,A_data,A);
- ///
- template <typename DerivedI, typename Scalar>
- IGL_INLINE void sparse_cached_precompute(
- const Eigen::MatrixBase<DerivedI> & I,
- const Eigen::MatrixBase<DerivedI> & J,
- Eigen::VectorXi& data,
- Eigen::SparseMatrix<Scalar>& X
- );
- /// \overload
- /// @param[in] triplets nnz vector of triplets of non zeros entries in X
- template <typename Scalar>
- IGL_INLINE void sparse_cached_precompute(
- const std::vector<Eigen::Triplet<Scalar> >& triplets,
- Eigen::VectorXi& data,
- Eigen::SparseMatrix<Scalar>& X
- );
- /// Build a sparse matrix from cached list of data and values
- ///
- /// @param[in] triplets nnz vector of triplets of non zeros entries in X
- /// @param[in] data ?? vector of ??
- /// @param[in,out] X m by n matrix of type T whose entries are to be found
- template <typename Scalar>
- IGL_INLINE void sparse_cached(
- const std::vector<Eigen::Triplet<Scalar> >& triplets,
- const Eigen::VectorXi& data,
- Eigen::SparseMatrix<Scalar>& X);
- /// \overload
- /// @param[in] V #V list of values
- template <typename DerivedV, typename Scalar>
- IGL_INLINE void sparse_cached(
- const Eigen::MatrixBase<DerivedV>& V,
- const Eigen::VectorXi& data,
- Eigen::SparseMatrix<Scalar>& X
- );
-
- }
- #ifndef IGL_STATIC_LIBRARY
- # include "sparse_cached.cpp"
- #endif
- #endif
|