| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- #include <igl/read_triangle_mesh.h>
- #include <igl/hessian_energy.h>
- #include <igl/curved_hessian_energy.h>
- #include <igl/massmatrix.h>
- #include <igl/cotmatrix.h>
- #include <igl/isolines_map.h>
- #include <igl/parula.h>
- #include <igl/vertex_components.h>
- #include <igl/remove_unreferenced.h>
- #include <igl/opengl/glfw/Viewer.h>
- #include <igl/heat_geodesics.h>
- #include <Eigen/Core>
- #include <Eigen/SparseCholesky>
- #include <iostream>
- #include <set>
- #include <limits>
- #include <stdlib.h>
- int main(int argc, char * argv[])
- {
- typedef Eigen::SparseMatrix<double> SparseMat;
- srand(57);
-
- //Read our mesh
- Eigen::MatrixXd V;
- Eigen::MatrixXi F;
- if(!igl::read_triangle_mesh(
- argc>1?argv[1]: TUTORIAL_SHARED_PATH "/beetle.off",V,F)) {
- std::cout << "Failed to load mesh." << std::endl;
- }
-
- //Constructing an exact function to smooth
- igl::HeatGeodesicsData<double> hgData;
- igl::heat_geodesics_precompute(V, F, hgData);
- Eigen::VectorXd heatDist;
- Eigen::VectorXi gamma(1); gamma << 1947; //1631;
- igl::heat_geodesics_solve(hgData, gamma, heatDist);
- Eigen::VectorXd zexact =
- 0.1*(heatDist.array() + (-heatDist.maxCoeff())).pow(2)
- + 3*V.block(0,1,V.rows(),1).array().cos();
-
- //Make the exact function noisy
- const double s = 0.1*(zexact.maxCoeff() - zexact.minCoeff());
- Eigen::VectorXd znoisy = zexact + s*Eigen::VectorXd::Random(zexact.size());
-
- //Constructing the squared Laplacian and squared Hessian energy
- SparseMat L, M;
- igl::cotmatrix(V, F, L);
- igl::massmatrix(V, F, igl::MASSMATRIX_TYPE_BARYCENTRIC, M);
- Eigen::SimplicialLDLT<SparseMat> solver(M);
- SparseMat MinvL = solver.solve(L);
- SparseMat QL = L.transpose()*MinvL;
- SparseMat QH;
- igl::hessian_energy(V, F, QH);
- SparseMat QcH;
- igl::curved_hessian_energy(V, F, QcH);
-
- //Solve to find Laplacian-smoothed Hessian-smoothed, and
- // curved-Hessian-smoothed solutions
- const double al = 3e-7;
- Eigen::SimplicialLDLT<SparseMat> lapSolver(al*QL + (1.-al)*M);
- Eigen::VectorXd zl = lapSolver.solve(al*M*znoisy);
- const double ah = 2e-7;
- Eigen::SimplicialLDLT<SparseMat> hessSolver(ah*QH + (1.-ah)*M);
- Eigen::VectorXd zh = hessSolver.solve(ah*M*znoisy);
- const double ach = 3e-7;
- Eigen::SimplicialLDLT<SparseMat> curvedHessSolver(al*QcH + (1.-ach)*M);
- Eigen::VectorXd zch = curvedHessSolver.solve(ach*M*znoisy);
-
- //Viewer that shows all functions: zexact, znoisy, zl, zh
- igl::opengl::glfw::Viewer viewer;
- viewer.data().set_mesh(V,F);
- viewer.data().show_lines = false;
- viewer.callback_key_down =
- [&](igl::opengl::glfw::Viewer & viewer, unsigned char key, int mod)->bool
- {
- //Graduate result to show isolines, then compute color matrix
- const Eigen::VectorXd* z;
- switch(key) {
- case '1':
- z = &zexact;
- break;
- case '2':
- z = &znoisy;
- break;
- case '3':
- z = &zl;
- break;
- case '4':
- z = &zh;
- break;
- case '5':
- z = &zch;
- break;
- default:
- return false;
- }
- viewer.data().set_data(*z);
- return true;
- };
- std::cout << R"(Smoothing a noisy function.
- Usage:
- 1 Show original function
- 2 Show noisy function
- 3 Biharmonic smoothing (zero Neumann boundary)
- 4 Biharmonic smoothing (natural planar Hessian boundary)
- 5 Biharmonic smoothing (natural curved Hessian boundary)
- )";
- Eigen::MatrixXd CM;
- igl::parula(Eigen::VectorXd::LinSpaced(21,0,1).eval(),false,CM);
- igl::isolines_map(Eigen::MatrixXd(CM),CM);
- viewer.data().set_colormap(CM);
- viewer.data().set_data(znoisy);
- viewer.launch();
-
-
- //Constructing a step function to smooth
- Eigen::VectorXd zstep = Eigen::VectorXd::Zero(V.rows());
- for(int i=0; i<V.rows(); ++i) {
- zstep(i) = V(i,2)<-0.25 ? 1. : (V(i,2)>0.31 ? 2. : 0);
- }
-
- //Smooth that function
- const double sl = 2e-5;
- Eigen::SimplicialLDLT<SparseMat> stepLapSolver(sl*QL + (1.-sl)*M);
- Eigen::VectorXd stepzl = stepLapSolver.solve(al*M*zstep);
- const double sh = 6e-6;
- Eigen::SimplicialLDLT<SparseMat> stepHessSolver(sh*QH + (1.-sh)*M);
- Eigen::VectorXd stepzh = stepHessSolver.solve(ah*M*zstep);
- const double sch = 2e-5;
- Eigen::SimplicialLDLT<SparseMat> stepCurvedHessSolver(sl*QcH + (1.-sch)*M);
- Eigen::VectorXd stepzch = stepCurvedHessSolver.solve(ach*M*zstep);
-
- //Display functions
- igl::opengl::glfw::Viewer viewer2;
- viewer2.data().set_mesh(V,F);
- viewer2.data().show_lines = false;
- viewer2.callback_key_down =
- [&](igl::opengl::glfw::Viewer & viewer, unsigned char key, int mod)->bool
- {
- //Graduate result to show isolines, then compute color matrix
- const Eigen::VectorXd* z;
- switch(key) {
- case '1':
- z = &zstep;
- break;
- case '2':
- z = &stepzl;
- break;
- case '3':
- z = &stepzh;
- break;
- case '4':
- z = &stepzch;
- break;
- default:
- return false;
- }
- viewer.data().set_data(*z);
- return true;
- };
- std::cout << R"(Smoothing a step function.
- Usage:
- 1 Show step function
- 2 Biharmonic smoothing (zero Neumann boundary)
- 3 Biharmonic smoothing (natural planar Hessian boundary)
- 4 Biharmonic smoothing (natural curved Hessian boundary)
- )";
-
- viewer2.data().set_colormap(CM);
- viewer2.data().set_data(zstep);
- viewer2.launch();
-
- return 0;
- }
|