| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- #include <igl/read_triangle_mesh.h>
- #include <igl/parula.h>
- #include <igl/remove_unreferenced.h>
- #include <igl/opengl/glfw/Viewer.h>
- #include <igl/per_face_normals.h>
- #include <igl/orient_halfedges.h>
- #include <igl/cr_vector_laplacian.h>
- #include <igl/cr_vector_mass.h>
- #include <igl/crouzeix_raviart_cotmatrix.h>
- #include <igl/crouzeix_raviart_massmatrix.h>
- #include <igl/edge_midpoints.h>
- #include <igl/edge_vectors.h>
- #include <igl/average_from_edges_onto_vertices.h>
- #include <igl/min_quad_with_fixed.h>
- #include <igl/heat_geodesics.h>
- #include <Eigen/Core>
- #include <Eigen/SparseCholesky>
- #include <Eigen/Geometry>
- #include <iostream>
- #include <set>
- #include <limits>
- #include <stdlib.h>
- int main(int argc, char * argv[])
- {
- typedef Eigen::SparseMatrix<double> SparseMat;
- typedef Eigen::Matrix<double, 1, 1> Vector1d;
- typedef Eigen::Matrix<int, 1, 1> Vector1i;
- //Constants used for smoothing
- const double howMuchToSmoothBy = 1e-1;
- const int howManySmoothingInterations = 50;
- //Read our mesh
- Eigen::MatrixXd V;
- Eigen::MatrixXi F;
- if(!igl::read_triangle_mesh
- (argc>1?argv[1]: TUTORIAL_SHARED_PATH "/cheburashka.off",V,F)) {
- std::cout << "Failed to load mesh." << std::endl;
- }
- //Compute vector Laplacian and mass matrix
- Eigen::MatrixXi E, oE;//Compute Laplacian and mass matrix
- SparseMat vecL, vecM;
- igl::cr_vector_mass(V, F, E, vecM);
- igl::cr_vector_laplacian(V, F, E, oE, vecL);
- const int m = vecL.rows()/2; //The number of edges in the mesh
- //Convert the E / oE matrix format to list of edges / EMAP format required
- // by the functions constructing scalar Crouzeix-Raviart functions
- Eigen::MatrixXi Elist(m,2), EMAP(3*F.rows(),1);
- for(int i=0; i<F.rows(); ++i) {
- for(int j=0; j<3; ++j) {
- const int e = E(i,j);
- EMAP(i+j*F.rows()) = e;
- if(oE(i,j)>0) {
- Elist.row(e) << F(i, (j+1)%3), F(i, (j+2)%3);
- }
- }
- }
- SparseMat scalarL, scalarM;
- igl::crouzeix_raviart_massmatrix(V, F, Elist, EMAP, scalarM);
- igl::crouzeix_raviart_cotmatrix(V, F, Elist, EMAP, scalarL);
- //Compute edge midpoints & edge vectors
- Eigen::MatrixXd edgeMps, parVec, perpVec;
- igl::edge_midpoints(V, F, E, oE, edgeMps);
- igl::edge_vectors(V, F, E, oE, parVec, perpVec);
- //Perform the vector heat method
- const int initialIndex = 14319;
- const double initialPara=0.95, initialPerp=0.08;
- const double t = 0.01;
- SparseMat Aeq;
- Eigen::VectorXd Beq;
- Eigen::VectorXi known = Eigen::Vector2i(initialIndex, initialIndex+m);
- Eigen::VectorXd knownVals = Eigen::Vector2d(initialPara, initialPerp);
- Eigen::VectorXd Y0 = Eigen::VectorXd::Zero(2*m), Yt;
- Y0(initialIndex) = initialPara; Y0(initialIndex+m) = initialPerp;
- igl::min_quad_with_fixed
- (SparseMat(vecM+t*vecL), Eigen::VectorXd(-vecM*Y0), known, knownVals,
- Aeq, Beq, false, Yt);
- Eigen::VectorXd u0 = Eigen::VectorXd::Zero(m), ut;
- u0(initialIndex) = sqrt(initialPara*initialPara + initialPerp*initialPerp);
- Eigen::VectorXi knownScal = Vector1i(initialIndex);
- Eigen::VectorXd knownScalVals = Vector1d(u0(initialIndex));
- igl::min_quad_with_fixed
- (SparseMat(scalarM+t*scalarL), Eigen::VectorXd(-scalarM*u0), knownScal,
- knownScalVals, Aeq, Beq, false, ut);
- Eigen::VectorXd phi0 = Eigen::VectorXd::Zero(m), phit;
- phi0(initialIndex) = 1;
- Eigen::VectorXd knownScalValsPhi = Vector1d(1);
- igl::min_quad_with_fixed
- (SparseMat(scalarM+t*scalarL), Eigen::VectorXd(-scalarM*phi0), knownScal,
- knownScalValsPhi, Aeq, Beq, false, phit);
- Eigen::ArrayXd Xtfactor = ut.array() /
- (phit.array() * (Yt.array().segment(0,m)*Yt.array().segment(0,m)
- + Yt.array().segment(m,m)*Yt.array().segment(m,m)).sqrt());
- Eigen::VectorXd Xt(2*m);
- Xt.segment(0,m) = Xtfactor * Yt.segment(0,m).array();
- Xt.segment(m,m) = Xtfactor * Yt.segment(m,m).array();
- //Compute scalar heat colors
- igl::HeatGeodesicsData<double> hgData;
- igl::heat_geodesics_precompute(V, F, hgData);
- Eigen::VectorXd heatColor;
- Eigen::VectorXi gamma = Elist.row(initialIndex);
- igl::heat_geodesics_solve(hgData, gamma, heatColor);
- //Convert vector field for plotting
- Eigen::MatrixXd vecs(m, 3);
- for(int i=0; i<edgeMps.rows(); ++i) {
- vecs.row(i) = Xt(i)*parVec.row(i) + Xt(i+edgeMps.rows())*perpVec.row(i);
- }
- //Viewer that shows parallel transported vector
- igl::opengl::glfw::Viewer viewer;
- viewer.data().set_mesh(V,F);
- viewer.data().show_lines = false;
- viewer.data().set_data(heatColor.maxCoeff()-heatColor.array(), //invert colormap
- igl::COLOR_MAP_TYPE_VIRIDIS);
- const double s = 0.012; //How much to scale vectors during plotting
- Eigen::MatrixXd vecColors(m, 3);
- for(int i=0; i<m; ++i) {
- vecColors.row(i) << 0.1, 0.1, 0.1;
- }
- vecColors.row(initialIndex) << 0.9, 0.1, 0.1;
- viewer.data().add_edges(edgeMps, edgeMps + s*vecs, vecColors);
- std::cout << R"(The red vector is parallel transported to every point on the surface.
- The surface is shaded by geodesic distance from the red vector.
- )"
- << std::endl;
- viewer.launch();
- return 0;
- }
|