jdct.h 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. /*
  2. * jdct.h
  3. *
  4. * Copyright (C) 1994-1996, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This include file contains common declarations for the forward and
  9. * inverse DCT modules. These declarations are private to the DCT managers
  10. * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
  11. * The individual DCT algorithms are kept in separate files to ease
  12. * machine-dependent tuning (e.g., assembly coding).
  13. */
  14. /*
  15. * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
  16. * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
  17. * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
  18. * implementations use an array of type FAST_FLOAT, instead.)
  19. * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
  20. * The DCT outputs are returned scaled up by a factor of 8; they therefore
  21. * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
  22. * convention improves accuracy in integer implementations and saves some
  23. * work in floating-point ones.
  24. * Quantization of the output coefficients is done by jcdctmgr.c. This
  25. * step requires an unsigned type and also one with twice the bits.
  26. */
  27. #if BITS_IN_JSAMPLE == 8
  28. #ifndef WITH_SIMD
  29. typedef int DCTELEM; /* 16 or 32 bits is fine */
  30. typedef unsigned int UDCTELEM;
  31. typedef unsigned long long UDCTELEM2;
  32. #else
  33. typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */
  34. typedef unsigned short UDCTELEM;
  35. typedef unsigned int UDCTELEM2;
  36. #endif
  37. #else
  38. typedef INT32 DCTELEM; /* must have 32 bits */
  39. typedef UINT32 UDCTELEM;
  40. typedef unsigned long long UDCTELEM2;
  41. #endif
  42. /*
  43. * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
  44. * to an output sample array. The routine must dequantize the input data as
  45. * well as perform the IDCT; for dequantization, it uses the multiplier table
  46. * pointed to by compptr->dct_table. The output data is to be placed into the
  47. * sample array starting at a specified column. (Any row offset needed will
  48. * be applied to the array pointer before it is passed to the IDCT code.)
  49. * Note that the number of samples emitted by the IDCT routine is
  50. * DCT_scaled_size * DCT_scaled_size.
  51. */
  52. /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
  53. /*
  54. * Each IDCT routine has its own ideas about the best dct_table element type.
  55. */
  56. typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
  57. #if BITS_IN_JSAMPLE == 8
  58. typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
  59. #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
  60. #else
  61. typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
  62. #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
  63. #endif
  64. typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
  65. /*
  66. * Each IDCT routine is responsible for range-limiting its results and
  67. * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
  68. * be quite far out of range if the input data is corrupt, so a bulletproof
  69. * range-limiting step is required. We use a mask-and-table-lookup method
  70. * to do the combined operations quickly. See the comments with
  71. * prepare_range_limit_table (in jdmaster.c) for more info.
  72. */
  73. #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
  74. #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
  75. /* Short forms of external names for systems with brain-damaged linkers. */
  76. #ifdef NEED_SHORT_EXTERNAL_NAMES
  77. #define jpeg_fdct_islow jFDislow
  78. #define jpeg_fdct_ifast jFDifast
  79. #define jpeg_fdct_float jFDfloat
  80. #define jpeg_idct_islow jRDislow
  81. #define jpeg_idct_ifast jRDifast
  82. #define jpeg_idct_float jRDfloat
  83. #define jpeg_idct_7x7 jRD7x7
  84. #define jpeg_idct_6x6 jRD6x6
  85. #define jpeg_idct_5x5 jRD5x5
  86. #define jpeg_idct_4x4 jRD4x4
  87. #define jpeg_idct_3x3 jRD3x3
  88. #define jpeg_idct_2x2 jRD2x2
  89. #define jpeg_idct_1x1 jRD1x1
  90. #define jpeg_idct_9x9 jRD9x9
  91. #define jpeg_idct_10x10 jRD10x10
  92. #define jpeg_idct_11x11 jRD11x11
  93. #define jpeg_idct_12x12 jRD12x12
  94. #define jpeg_idct_13x13 jRD13x13
  95. #define jpeg_idct_14x14 jRD14x14
  96. #define jpeg_idct_15x15 jRD15x15
  97. #define jpeg_idct_16x16 jRD16x16
  98. #endif /* NEED_SHORT_EXTERNAL_NAMES */
  99. /* Extern declarations for the forward and inverse DCT routines. */
  100. EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
  101. EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
  102. EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
  103. EXTERN(void) jpeg_idct_islow
  104. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  105. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  106. EXTERN(void) jpeg_idct_ifast
  107. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  108. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  109. EXTERN(void) jpeg_idct_float
  110. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  111. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  112. EXTERN(void) jpeg_idct_7x7
  113. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  114. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  115. EXTERN(void) jpeg_idct_6x6
  116. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  117. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  118. EXTERN(void) jpeg_idct_5x5
  119. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  120. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  121. EXTERN(void) jpeg_idct_4x4
  122. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  123. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  124. EXTERN(void) jpeg_idct_3x3
  125. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  126. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  127. EXTERN(void) jpeg_idct_2x2
  128. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  129. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  130. EXTERN(void) jpeg_idct_1x1
  131. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  132. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  133. EXTERN(void) jpeg_idct_9x9
  134. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  135. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  136. EXTERN(void) jpeg_idct_10x10
  137. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  138. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  139. EXTERN(void) jpeg_idct_11x11
  140. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  141. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  142. EXTERN(void) jpeg_idct_12x12
  143. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  144. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  145. EXTERN(void) jpeg_idct_13x13
  146. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  147. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  148. EXTERN(void) jpeg_idct_14x14
  149. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  150. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  151. EXTERN(void) jpeg_idct_15x15
  152. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  153. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  154. EXTERN(void) jpeg_idct_16x16
  155. JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  156. JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  157. /*
  158. * Macros for handling fixed-point arithmetic; these are used by many
  159. * but not all of the DCT/IDCT modules.
  160. *
  161. * All values are expected to be of type INT32.
  162. * Fractional constants are scaled left by CONST_BITS bits.
  163. * CONST_BITS is defined within each module using these macros,
  164. * and may differ from one module to the next.
  165. */
  166. #define ONE ((INT32) 1)
  167. #define CONST_SCALE (ONE << CONST_BITS)
  168. /* Convert a positive real constant to an integer scaled by CONST_SCALE.
  169. * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
  170. * thus causing a lot of useless floating-point operations at run time.
  171. */
  172. #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
  173. /* Descale and correctly round an INT32 value that's scaled by N bits.
  174. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  175. * the fudge factor is correct for either sign of X.
  176. */
  177. #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
  178. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  179. * This macro is used only when the two inputs will actually be no more than
  180. * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
  181. * full 32x32 multiply. This provides a useful speedup on many machines.
  182. * Unfortunately there is no way to specify a 16x16->32 multiply portably
  183. * in C, but some C compilers will do the right thing if you provide the
  184. * correct combination of casts.
  185. */
  186. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  187. #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
  188. #endif
  189. #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
  190. #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
  191. #endif
  192. #ifndef MULTIPLY16C16 /* default definition */
  193. #define MULTIPLY16C16(var,const) ((var) * (const))
  194. #endif
  195. /* Same except both inputs are variables. */
  196. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  197. #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
  198. #endif
  199. #ifndef MULTIPLY16V16 /* default definition */
  200. #define MULTIPLY16V16(var1,var2) ((var1) * (var2))
  201. #endif