jidctint.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623
  1. /*
  2. * jidctint.c
  3. *
  4. * Copyright (C) 1991-1998, Thomas G. Lane.
  5. * Modification developed 2002-2009 by Guido Vollbeding.
  6. * This file is part of the Independent JPEG Group's software.
  7. * For conditions of distribution and use, see the accompanying README file.
  8. *
  9. * This file contains a slow-but-accurate integer implementation of the
  10. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  11. * must also perform dequantization of the input coefficients.
  12. *
  13. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  14. * on each row (or vice versa, but it's more convenient to emit a row at
  15. * a time). Direct algorithms are also available, but they are much more
  16. * complex and seem not to be any faster when reduced to code.
  17. *
  18. * This implementation is based on an algorithm described in
  19. * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  20. * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  21. * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  22. * The primary algorithm described there uses 11 multiplies and 29 adds.
  23. * We use their alternate method with 12 multiplies and 32 adds.
  24. * The advantage of this method is that no data path contains more than one
  25. * multiplication; this allows a very simple and accurate implementation in
  26. * scaled fixed-point arithmetic, with a minimal number of shifts.
  27. *
  28. * We also provide IDCT routines with various output sample block sizes for
  29. * direct resolution reduction or enlargement without additional resampling:
  30. * NxN (N=1...16) pixels for one 8x8 input DCT block.
  31. *
  32. * For N<8 we simply take the corresponding low-frequency coefficients of
  33. * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
  34. * to yield the downscaled outputs.
  35. * This can be seen as direct low-pass downsampling from the DCT domain
  36. * point of view rather than the usual spatial domain point of view,
  37. * yielding significant computational savings and results at least
  38. * as good as common bilinear (averaging) spatial downsampling.
  39. *
  40. * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
  41. * lower frequencies and higher frequencies assumed to be zero.
  42. * It turns out that the computational effort is similar to the 8x8 IDCT
  43. * regarding the output size.
  44. * Furthermore, the scaling and descaling is the same for all IDCT sizes.
  45. *
  46. * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
  47. * since there would be too many additional constants to pre-calculate.
  48. */
  49. #define JPEG_INTERNALS
  50. #include "jinclude.h"
  51. #include "jpeglib.h"
  52. #include "jdct.h" /* Private declarations for DCT subsystem */
  53. #ifdef DCT_ISLOW_SUPPORTED
  54. /*
  55. * This module is specialized to the case DCTSIZE = 8.
  56. */
  57. #if DCTSIZE != 8
  58. Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
  59. #endif
  60. /*
  61. * The poop on this scaling stuff is as follows:
  62. *
  63. * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  64. * larger than the true IDCT outputs. The final outputs are therefore
  65. * a factor of N larger than desired; since N=8 this can be cured by
  66. * a simple right shift at the end of the algorithm. The advantage of
  67. * this arrangement is that we save two multiplications per 1-D IDCT,
  68. * because the y0 and y4 inputs need not be divided by sqrt(N).
  69. *
  70. * We have to do addition and subtraction of the integer inputs, which
  71. * is no problem, and multiplication by fractional constants, which is
  72. * a problem to do in integer arithmetic. We multiply all the constants
  73. * by CONST_SCALE and convert them to integer constants (thus retaining
  74. * CONST_BITS bits of precision in the constants). After doing a
  75. * multiplication we have to divide the product by CONST_SCALE, with proper
  76. * rounding, to produce the correct output. This division can be done
  77. * cheaply as a right shift of CONST_BITS bits. We postpone shifting
  78. * as long as possible so that partial sums can be added together with
  79. * full fractional precision.
  80. *
  81. * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  82. * they are represented to better-than-integral precision. These outputs
  83. * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  84. * with the recommended scaling. (To scale up 12-bit sample data further, an
  85. * intermediate INT32 array would be needed.)
  86. *
  87. * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  88. * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
  89. * shows that the values given below are the most effective.
  90. */
  91. #if BITS_IN_JSAMPLE == 8
  92. #define CONST_BITS 13
  93. #define PASS1_BITS 2
  94. #else
  95. #define CONST_BITS 13
  96. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  97. #endif
  98. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  99. * causing a lot of useless floating-point operations at run time.
  100. * To get around this we use the following pre-calculated constants.
  101. * If you change CONST_BITS you may want to add appropriate values.
  102. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  103. */
  104. #if CONST_BITS == 13
  105. #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
  106. #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
  107. #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
  108. #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
  109. #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
  110. #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
  111. #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
  112. #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
  113. #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
  114. #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
  115. #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
  116. #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
  117. #else
  118. #define FIX_0_298631336 FIX(0.298631336)
  119. #define FIX_0_390180644 FIX(0.390180644)
  120. #define FIX_0_541196100 FIX(0.541196100)
  121. #define FIX_0_765366865 FIX(0.765366865)
  122. #define FIX_0_899976223 FIX(0.899976223)
  123. #define FIX_1_175875602 FIX(1.175875602)
  124. #define FIX_1_501321110 FIX(1.501321110)
  125. #define FIX_1_847759065 FIX(1.847759065)
  126. #define FIX_1_961570560 FIX(1.961570560)
  127. #define FIX_2_053119869 FIX(2.053119869)
  128. #define FIX_2_562915447 FIX(2.562915447)
  129. #define FIX_3_072711026 FIX(3.072711026)
  130. #endif
  131. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  132. * For 8-bit samples with the recommended scaling, all the variable
  133. * and constant values involved are no more than 16 bits wide, so a
  134. * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  135. * For 12-bit samples, a full 32-bit multiplication will be needed.
  136. */
  137. #if BITS_IN_JSAMPLE == 8
  138. #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
  139. #else
  140. #define MULTIPLY(var,const) ((var) * (const))
  141. #endif
  142. /* Dequantize a coefficient by multiplying it by the multiplier-table
  143. * entry; produce an int result. In this module, both inputs and result
  144. * are 16 bits or less, so either int or short multiply will work.
  145. */
  146. #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
  147. /*
  148. * Perform dequantization and inverse DCT on one block of coefficients.
  149. */
  150. GLOBAL(void)
  151. jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  152. JCOEFPTR coef_block,
  153. JSAMPARRAY output_buf, JDIMENSION output_col)
  154. {
  155. INT32 tmp0, tmp1, tmp2, tmp3;
  156. INT32 tmp10, tmp11, tmp12, tmp13;
  157. INT32 z1, z2, z3, z4, z5;
  158. JCOEFPTR inptr;
  159. ISLOW_MULT_TYPE * quantptr;
  160. int * wsptr;
  161. JSAMPROW outptr;
  162. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  163. int ctr;
  164. int workspace[DCTSIZE2]; /* buffers data between passes */
  165. SHIFT_TEMPS
  166. /* Pass 1: process columns from input, store into work array. */
  167. /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  168. /* furthermore, we scale the results by 2**PASS1_BITS. */
  169. inptr = coef_block;
  170. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  171. wsptr = workspace;
  172. for (ctr = DCTSIZE; ctr > 0; ctr--) {
  173. /* Due to quantization, we will usually find that many of the input
  174. * coefficients are zero, especially the AC terms. We can exploit this
  175. * by short-circuiting the IDCT calculation for any column in which all
  176. * the AC terms are zero. In that case each output is equal to the
  177. * DC coefficient (with scale factor as needed).
  178. * With typical images and quantization tables, half or more of the
  179. * column DCT calculations can be simplified this way.
  180. */
  181. if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
  182. inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
  183. inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
  184. inptr[DCTSIZE*7] == 0) {
  185. /* AC terms all zero */
  186. int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
  187. wsptr[DCTSIZE*0] = dcval;
  188. wsptr[DCTSIZE*1] = dcval;
  189. wsptr[DCTSIZE*2] = dcval;
  190. wsptr[DCTSIZE*3] = dcval;
  191. wsptr[DCTSIZE*4] = dcval;
  192. wsptr[DCTSIZE*5] = dcval;
  193. wsptr[DCTSIZE*6] = dcval;
  194. wsptr[DCTSIZE*7] = dcval;
  195. inptr++; /* advance pointers to next column */
  196. quantptr++;
  197. wsptr++;
  198. continue;
  199. }
  200. /* Even part: reverse the even part of the forward DCT. */
  201. /* The rotator is sqrt(2)*c(-6). */
  202. z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  203. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  204. z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  205. tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  206. tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  207. z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  208. z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  209. tmp0 = (z2 + z3) << CONST_BITS;
  210. tmp1 = (z2 - z3) << CONST_BITS;
  211. tmp10 = tmp0 + tmp3;
  212. tmp13 = tmp0 - tmp3;
  213. tmp11 = tmp1 + tmp2;
  214. tmp12 = tmp1 - tmp2;
  215. /* Odd part per figure 8; the matrix is unitary and hence its
  216. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  217. */
  218. tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  219. tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  220. tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  221. tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  222. z1 = tmp0 + tmp3;
  223. z2 = tmp1 + tmp2;
  224. z3 = tmp0 + tmp2;
  225. z4 = tmp1 + tmp3;
  226. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  227. tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  228. tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  229. tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  230. tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  231. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  232. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  233. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  234. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  235. z3 += z5;
  236. z4 += z5;
  237. tmp0 += z1 + z3;
  238. tmp1 += z2 + z4;
  239. tmp2 += z2 + z3;
  240. tmp3 += z1 + z4;
  241. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  242. wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
  243. wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
  244. wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
  245. wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
  246. wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
  247. wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
  248. wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
  249. wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
  250. inptr++; /* advance pointers to next column */
  251. quantptr++;
  252. wsptr++;
  253. }
  254. /* Pass 2: process rows from work array, store into output array. */
  255. /* Note that we must descale the results by a factor of 8 == 2**3, */
  256. /* and also undo the PASS1_BITS scaling. */
  257. wsptr = workspace;
  258. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  259. outptr = output_buf[ctr] + output_col;
  260. /* Rows of zeroes can be exploited in the same way as we did with columns.
  261. * However, the column calculation has created many nonzero AC terms, so
  262. * the simplification applies less often (typically 5% to 10% of the time).
  263. * On machines with very fast multiplication, it's possible that the
  264. * test takes more time than it's worth. In that case this section
  265. * may be commented out.
  266. */
  267. #ifndef NO_ZERO_ROW_TEST
  268. if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
  269. wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
  270. /* AC terms all zero */
  271. JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
  272. & RANGE_MASK];
  273. outptr[0] = dcval;
  274. outptr[1] = dcval;
  275. outptr[2] = dcval;
  276. outptr[3] = dcval;
  277. outptr[4] = dcval;
  278. outptr[5] = dcval;
  279. outptr[6] = dcval;
  280. outptr[7] = dcval;
  281. wsptr += DCTSIZE; /* advance pointer to next row */
  282. continue;
  283. }
  284. #endif
  285. /* Even part: reverse the even part of the forward DCT. */
  286. /* The rotator is sqrt(2)*c(-6). */
  287. z2 = (INT32) wsptr[2];
  288. z3 = (INT32) wsptr[6];
  289. z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  290. tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  291. tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  292. tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
  293. tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
  294. tmp10 = tmp0 + tmp3;
  295. tmp13 = tmp0 - tmp3;
  296. tmp11 = tmp1 + tmp2;
  297. tmp12 = tmp1 - tmp2;
  298. /* Odd part per figure 8; the matrix is unitary and hence its
  299. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  300. */
  301. tmp0 = (INT32) wsptr[7];
  302. tmp1 = (INT32) wsptr[5];
  303. tmp2 = (INT32) wsptr[3];
  304. tmp3 = (INT32) wsptr[1];
  305. z1 = tmp0 + tmp3;
  306. z2 = tmp1 + tmp2;
  307. z3 = tmp0 + tmp2;
  308. z4 = tmp1 + tmp3;
  309. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  310. tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  311. tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  312. tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  313. tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  314. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  315. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  316. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  317. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  318. z3 += z5;
  319. z4 += z5;
  320. tmp0 += z1 + z3;
  321. tmp1 += z2 + z4;
  322. tmp2 += z2 + z3;
  323. tmp3 += z1 + z4;
  324. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  325. outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
  326. CONST_BITS+PASS1_BITS+3)
  327. & RANGE_MASK];
  328. outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
  329. CONST_BITS+PASS1_BITS+3)
  330. & RANGE_MASK];
  331. outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
  332. CONST_BITS+PASS1_BITS+3)
  333. & RANGE_MASK];
  334. outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
  335. CONST_BITS+PASS1_BITS+3)
  336. & RANGE_MASK];
  337. outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
  338. CONST_BITS+PASS1_BITS+3)
  339. & RANGE_MASK];
  340. outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
  341. CONST_BITS+PASS1_BITS+3)
  342. & RANGE_MASK];
  343. outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
  344. CONST_BITS+PASS1_BITS+3)
  345. & RANGE_MASK];
  346. outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
  347. CONST_BITS+PASS1_BITS+3)
  348. & RANGE_MASK];
  349. wsptr += DCTSIZE; /* advance pointer to next row */
  350. }
  351. }
  352. #ifdef IDCT_SCALING_SUPPORTED
  353. /*
  354. * Perform dequantization and inverse DCT on one block of coefficients,
  355. * producing a 7x7 output block.
  356. *
  357. * Optimized algorithm with 12 multiplications in the 1-D kernel.
  358. * cK represents sqrt(2) * cos(K*pi/14).
  359. */
  360. GLOBAL(void)
  361. jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  362. JCOEFPTR coef_block,
  363. JSAMPARRAY output_buf, JDIMENSION output_col)
  364. {
  365. INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
  366. INT32 z1, z2, z3;
  367. JCOEFPTR inptr;
  368. ISLOW_MULT_TYPE * quantptr;
  369. int * wsptr;
  370. JSAMPROW outptr;
  371. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  372. int ctr;
  373. int workspace[7*7]; /* buffers data between passes */
  374. SHIFT_TEMPS
  375. /* Pass 1: process columns from input, store into work array. */
  376. inptr = coef_block;
  377. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  378. wsptr = workspace;
  379. for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
  380. /* Even part */
  381. tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  382. tmp13 <<= CONST_BITS;
  383. /* Add fudge factor here for final descale. */
  384. tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
  385. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  386. z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  387. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  388. tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
  389. tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
  390. tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
  391. tmp0 = z1 + z3;
  392. z2 -= tmp0;
  393. tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
  394. tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
  395. tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
  396. tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
  397. /* Odd part */
  398. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  399. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  400. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  401. tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
  402. tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
  403. tmp0 = tmp1 - tmp2;
  404. tmp1 += tmp2;
  405. tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
  406. tmp1 += tmp2;
  407. z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
  408. tmp0 += z2;
  409. tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
  410. /* Final output stage */
  411. wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
  412. wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
  413. wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
  414. wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
  415. wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
  416. wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
  417. wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
  418. }
  419. /* Pass 2: process 7 rows from work array, store into output array. */
  420. wsptr = workspace;
  421. for (ctr = 0; ctr < 7; ctr++) {
  422. outptr = output_buf[ctr] + output_col;
  423. /* Even part */
  424. /* Add fudge factor here for final descale. */
  425. tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  426. tmp13 <<= CONST_BITS;
  427. z1 = (INT32) wsptr[2];
  428. z2 = (INT32) wsptr[4];
  429. z3 = (INT32) wsptr[6];
  430. tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
  431. tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
  432. tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
  433. tmp0 = z1 + z3;
  434. z2 -= tmp0;
  435. tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
  436. tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
  437. tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
  438. tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
  439. /* Odd part */
  440. z1 = (INT32) wsptr[1];
  441. z2 = (INT32) wsptr[3];
  442. z3 = (INT32) wsptr[5];
  443. tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
  444. tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
  445. tmp0 = tmp1 - tmp2;
  446. tmp1 += tmp2;
  447. tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
  448. tmp1 += tmp2;
  449. z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
  450. tmp0 += z2;
  451. tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
  452. /* Final output stage */
  453. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
  454. CONST_BITS+PASS1_BITS+3)
  455. & RANGE_MASK];
  456. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
  457. CONST_BITS+PASS1_BITS+3)
  458. & RANGE_MASK];
  459. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
  460. CONST_BITS+PASS1_BITS+3)
  461. & RANGE_MASK];
  462. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
  463. CONST_BITS+PASS1_BITS+3)
  464. & RANGE_MASK];
  465. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
  466. CONST_BITS+PASS1_BITS+3)
  467. & RANGE_MASK];
  468. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
  469. CONST_BITS+PASS1_BITS+3)
  470. & RANGE_MASK];
  471. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
  472. CONST_BITS+PASS1_BITS+3)
  473. & RANGE_MASK];
  474. wsptr += 7; /* advance pointer to next row */
  475. }
  476. }
  477. /*
  478. * Perform dequantization and inverse DCT on one block of coefficients,
  479. * producing a reduced-size 6x6 output block.
  480. *
  481. * Optimized algorithm with 3 multiplications in the 1-D kernel.
  482. * cK represents sqrt(2) * cos(K*pi/12).
  483. */
  484. GLOBAL(void)
  485. jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  486. JCOEFPTR coef_block,
  487. JSAMPARRAY output_buf, JDIMENSION output_col)
  488. {
  489. INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
  490. INT32 z1, z2, z3;
  491. JCOEFPTR inptr;
  492. ISLOW_MULT_TYPE * quantptr;
  493. int * wsptr;
  494. JSAMPROW outptr;
  495. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  496. int ctr;
  497. int workspace[6*6]; /* buffers data between passes */
  498. SHIFT_TEMPS
  499. /* Pass 1: process columns from input, store into work array. */
  500. inptr = coef_block;
  501. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  502. wsptr = workspace;
  503. for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
  504. /* Even part */
  505. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  506. tmp0 <<= CONST_BITS;
  507. /* Add fudge factor here for final descale. */
  508. tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
  509. tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  510. tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
  511. tmp1 = tmp0 + tmp10;
  512. tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
  513. tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  514. tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
  515. tmp10 = tmp1 + tmp0;
  516. tmp12 = tmp1 - tmp0;
  517. /* Odd part */
  518. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  519. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  520. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  521. tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
  522. tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
  523. tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
  524. tmp1 = (z1 - z2 - z3) << PASS1_BITS;
  525. /* Final output stage */
  526. wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
  527. wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
  528. wsptr[6*1] = (int) (tmp11 + tmp1);
  529. wsptr[6*4] = (int) (tmp11 - tmp1);
  530. wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
  531. wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
  532. }
  533. /* Pass 2: process 6 rows from work array, store into output array. */
  534. wsptr = workspace;
  535. for (ctr = 0; ctr < 6; ctr++) {
  536. outptr = output_buf[ctr] + output_col;
  537. /* Even part */
  538. /* Add fudge factor here for final descale. */
  539. tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  540. tmp0 <<= CONST_BITS;
  541. tmp2 = (INT32) wsptr[4];
  542. tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
  543. tmp1 = tmp0 + tmp10;
  544. tmp11 = tmp0 - tmp10 - tmp10;
  545. tmp10 = (INT32) wsptr[2];
  546. tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
  547. tmp10 = tmp1 + tmp0;
  548. tmp12 = tmp1 - tmp0;
  549. /* Odd part */
  550. z1 = (INT32) wsptr[1];
  551. z2 = (INT32) wsptr[3];
  552. z3 = (INT32) wsptr[5];
  553. tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
  554. tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
  555. tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
  556. tmp1 = (z1 - z2 - z3) << CONST_BITS;
  557. /* Final output stage */
  558. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
  559. CONST_BITS+PASS1_BITS+3)
  560. & RANGE_MASK];
  561. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
  562. CONST_BITS+PASS1_BITS+3)
  563. & RANGE_MASK];
  564. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
  565. CONST_BITS+PASS1_BITS+3)
  566. & RANGE_MASK];
  567. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
  568. CONST_BITS+PASS1_BITS+3)
  569. & RANGE_MASK];
  570. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
  571. CONST_BITS+PASS1_BITS+3)
  572. & RANGE_MASK];
  573. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
  574. CONST_BITS+PASS1_BITS+3)
  575. & RANGE_MASK];
  576. wsptr += 6; /* advance pointer to next row */
  577. }
  578. }
  579. /*
  580. * Perform dequantization and inverse DCT on one block of coefficients,
  581. * producing a reduced-size 5x5 output block.
  582. *
  583. * Optimized algorithm with 5 multiplications in the 1-D kernel.
  584. * cK represents sqrt(2) * cos(K*pi/10).
  585. */
  586. GLOBAL(void)
  587. jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  588. JCOEFPTR coef_block,
  589. JSAMPARRAY output_buf, JDIMENSION output_col)
  590. {
  591. INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
  592. INT32 z1, z2, z3;
  593. JCOEFPTR inptr;
  594. ISLOW_MULT_TYPE * quantptr;
  595. int * wsptr;
  596. JSAMPROW outptr;
  597. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  598. int ctr;
  599. int workspace[5*5]; /* buffers data between passes */
  600. SHIFT_TEMPS
  601. /* Pass 1: process columns from input, store into work array. */
  602. inptr = coef_block;
  603. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  604. wsptr = workspace;
  605. for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
  606. /* Even part */
  607. tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  608. tmp12 <<= CONST_BITS;
  609. /* Add fudge factor here for final descale. */
  610. tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
  611. tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  612. tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  613. z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
  614. z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
  615. z3 = tmp12 + z2;
  616. tmp10 = z3 + z1;
  617. tmp11 = z3 - z1;
  618. tmp12 -= z2 << 2;
  619. /* Odd part */
  620. z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  621. z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  622. z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
  623. tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
  624. tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
  625. /* Final output stage */
  626. wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
  627. wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
  628. wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
  629. wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
  630. wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
  631. }
  632. /* Pass 2: process 5 rows from work array, store into output array. */
  633. wsptr = workspace;
  634. for (ctr = 0; ctr < 5; ctr++) {
  635. outptr = output_buf[ctr] + output_col;
  636. /* Even part */
  637. /* Add fudge factor here for final descale. */
  638. tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  639. tmp12 <<= CONST_BITS;
  640. tmp0 = (INT32) wsptr[2];
  641. tmp1 = (INT32) wsptr[4];
  642. z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
  643. z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
  644. z3 = tmp12 + z2;
  645. tmp10 = z3 + z1;
  646. tmp11 = z3 - z1;
  647. tmp12 -= z2 << 2;
  648. /* Odd part */
  649. z2 = (INT32) wsptr[1];
  650. z3 = (INT32) wsptr[3];
  651. z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
  652. tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
  653. tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
  654. /* Final output stage */
  655. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
  656. CONST_BITS+PASS1_BITS+3)
  657. & RANGE_MASK];
  658. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
  659. CONST_BITS+PASS1_BITS+3)
  660. & RANGE_MASK];
  661. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
  662. CONST_BITS+PASS1_BITS+3)
  663. & RANGE_MASK];
  664. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
  665. CONST_BITS+PASS1_BITS+3)
  666. & RANGE_MASK];
  667. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
  668. CONST_BITS+PASS1_BITS+3)
  669. & RANGE_MASK];
  670. wsptr += 5; /* advance pointer to next row */
  671. }
  672. }
  673. /*
  674. * Perform dequantization and inverse DCT on one block of coefficients,
  675. * producing a reduced-size 3x3 output block.
  676. *
  677. * Optimized algorithm with 2 multiplications in the 1-D kernel.
  678. * cK represents sqrt(2) * cos(K*pi/6).
  679. */
  680. GLOBAL(void)
  681. jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  682. JCOEFPTR coef_block,
  683. JSAMPARRAY output_buf, JDIMENSION output_col)
  684. {
  685. INT32 tmp0, tmp2, tmp10, tmp12;
  686. JCOEFPTR inptr;
  687. ISLOW_MULT_TYPE * quantptr;
  688. int * wsptr;
  689. JSAMPROW outptr;
  690. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  691. int ctr;
  692. int workspace[3*3]; /* buffers data between passes */
  693. SHIFT_TEMPS
  694. /* Pass 1: process columns from input, store into work array. */
  695. inptr = coef_block;
  696. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  697. wsptr = workspace;
  698. for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
  699. /* Even part */
  700. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  701. tmp0 <<= CONST_BITS;
  702. /* Add fudge factor here for final descale. */
  703. tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
  704. tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  705. tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
  706. tmp10 = tmp0 + tmp12;
  707. tmp2 = tmp0 - tmp12 - tmp12;
  708. /* Odd part */
  709. tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  710. tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
  711. /* Final output stage */
  712. wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
  713. wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
  714. wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
  715. }
  716. /* Pass 2: process 3 rows from work array, store into output array. */
  717. wsptr = workspace;
  718. for (ctr = 0; ctr < 3; ctr++) {
  719. outptr = output_buf[ctr] + output_col;
  720. /* Even part */
  721. /* Add fudge factor here for final descale. */
  722. tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  723. tmp0 <<= CONST_BITS;
  724. tmp2 = (INT32) wsptr[2];
  725. tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
  726. tmp10 = tmp0 + tmp12;
  727. tmp2 = tmp0 - tmp12 - tmp12;
  728. /* Odd part */
  729. tmp12 = (INT32) wsptr[1];
  730. tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
  731. /* Final output stage */
  732. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
  733. CONST_BITS+PASS1_BITS+3)
  734. & RANGE_MASK];
  735. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
  736. CONST_BITS+PASS1_BITS+3)
  737. & RANGE_MASK];
  738. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
  739. CONST_BITS+PASS1_BITS+3)
  740. & RANGE_MASK];
  741. wsptr += 3; /* advance pointer to next row */
  742. }
  743. }
  744. /*
  745. * Perform dequantization and inverse DCT on one block of coefficients,
  746. * producing a 9x9 output block.
  747. *
  748. * Optimized algorithm with 10 multiplications in the 1-D kernel.
  749. * cK represents sqrt(2) * cos(K*pi/18).
  750. */
  751. GLOBAL(void)
  752. jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  753. JCOEFPTR coef_block,
  754. JSAMPARRAY output_buf, JDIMENSION output_col)
  755. {
  756. INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
  757. INT32 z1, z2, z3, z4;
  758. JCOEFPTR inptr;
  759. ISLOW_MULT_TYPE * quantptr;
  760. int * wsptr;
  761. JSAMPROW outptr;
  762. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  763. int ctr;
  764. int workspace[8*9]; /* buffers data between passes */
  765. SHIFT_TEMPS
  766. /* Pass 1: process columns from input, store into work array. */
  767. inptr = coef_block;
  768. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  769. wsptr = workspace;
  770. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  771. /* Even part */
  772. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  773. tmp0 <<= CONST_BITS;
  774. /* Add fudge factor here for final descale. */
  775. tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
  776. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  777. z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  778. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  779. tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
  780. tmp1 = tmp0 + tmp3;
  781. tmp2 = tmp0 - tmp3 - tmp3;
  782. tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
  783. tmp11 = tmp2 + tmp0;
  784. tmp14 = tmp2 - tmp0 - tmp0;
  785. tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
  786. tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
  787. tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
  788. tmp10 = tmp1 + tmp0 - tmp3;
  789. tmp12 = tmp1 - tmp0 + tmp2;
  790. tmp13 = tmp1 - tmp2 + tmp3;
  791. /* Odd part */
  792. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  793. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  794. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  795. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  796. z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
  797. tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
  798. tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
  799. tmp0 = tmp2 + tmp3 - z2;
  800. tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
  801. tmp2 += z2 - tmp1;
  802. tmp3 += z2 + tmp1;
  803. tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
  804. /* Final output stage */
  805. wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
  806. wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
  807. wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
  808. wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
  809. wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
  810. wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
  811. wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
  812. wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
  813. wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
  814. }
  815. /* Pass 2: process 9 rows from work array, store into output array. */
  816. wsptr = workspace;
  817. for (ctr = 0; ctr < 9; ctr++) {
  818. outptr = output_buf[ctr] + output_col;
  819. /* Even part */
  820. /* Add fudge factor here for final descale. */
  821. tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  822. tmp0 <<= CONST_BITS;
  823. z1 = (INT32) wsptr[2];
  824. z2 = (INT32) wsptr[4];
  825. z3 = (INT32) wsptr[6];
  826. tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
  827. tmp1 = tmp0 + tmp3;
  828. tmp2 = tmp0 - tmp3 - tmp3;
  829. tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
  830. tmp11 = tmp2 + tmp0;
  831. tmp14 = tmp2 - tmp0 - tmp0;
  832. tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
  833. tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
  834. tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
  835. tmp10 = tmp1 + tmp0 - tmp3;
  836. tmp12 = tmp1 - tmp0 + tmp2;
  837. tmp13 = tmp1 - tmp2 + tmp3;
  838. /* Odd part */
  839. z1 = (INT32) wsptr[1];
  840. z2 = (INT32) wsptr[3];
  841. z3 = (INT32) wsptr[5];
  842. z4 = (INT32) wsptr[7];
  843. z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
  844. tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
  845. tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
  846. tmp0 = tmp2 + tmp3 - z2;
  847. tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
  848. tmp2 += z2 - tmp1;
  849. tmp3 += z2 + tmp1;
  850. tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
  851. /* Final output stage */
  852. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
  853. CONST_BITS+PASS1_BITS+3)
  854. & RANGE_MASK];
  855. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
  856. CONST_BITS+PASS1_BITS+3)
  857. & RANGE_MASK];
  858. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
  859. CONST_BITS+PASS1_BITS+3)
  860. & RANGE_MASK];
  861. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
  862. CONST_BITS+PASS1_BITS+3)
  863. & RANGE_MASK];
  864. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
  865. CONST_BITS+PASS1_BITS+3)
  866. & RANGE_MASK];
  867. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
  868. CONST_BITS+PASS1_BITS+3)
  869. & RANGE_MASK];
  870. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
  871. CONST_BITS+PASS1_BITS+3)
  872. & RANGE_MASK];
  873. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
  874. CONST_BITS+PASS1_BITS+3)
  875. & RANGE_MASK];
  876. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
  877. CONST_BITS+PASS1_BITS+3)
  878. & RANGE_MASK];
  879. wsptr += 8; /* advance pointer to next row */
  880. }
  881. }
  882. /*
  883. * Perform dequantization and inverse DCT on one block of coefficients,
  884. * producing a 10x10 output block.
  885. *
  886. * Optimized algorithm with 12 multiplications in the 1-D kernel.
  887. * cK represents sqrt(2) * cos(K*pi/20).
  888. */
  889. GLOBAL(void)
  890. jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  891. JCOEFPTR coef_block,
  892. JSAMPARRAY output_buf, JDIMENSION output_col)
  893. {
  894. INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
  895. INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
  896. INT32 z1, z2, z3, z4, z5;
  897. JCOEFPTR inptr;
  898. ISLOW_MULT_TYPE * quantptr;
  899. int * wsptr;
  900. JSAMPROW outptr;
  901. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  902. int ctr;
  903. int workspace[8*10]; /* buffers data between passes */
  904. SHIFT_TEMPS
  905. /* Pass 1: process columns from input, store into work array. */
  906. inptr = coef_block;
  907. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  908. wsptr = workspace;
  909. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  910. /* Even part */
  911. z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  912. z3 <<= CONST_BITS;
  913. /* Add fudge factor here for final descale. */
  914. z3 += ONE << (CONST_BITS-PASS1_BITS-1);
  915. z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  916. z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
  917. z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
  918. tmp10 = z3 + z1;
  919. tmp11 = z3 - z2;
  920. tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
  921. CONST_BITS-PASS1_BITS);
  922. z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  923. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  924. z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
  925. tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
  926. tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
  927. tmp20 = tmp10 + tmp12;
  928. tmp24 = tmp10 - tmp12;
  929. tmp21 = tmp11 + tmp13;
  930. tmp23 = tmp11 - tmp13;
  931. /* Odd part */
  932. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  933. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  934. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  935. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  936. tmp11 = z2 + z4;
  937. tmp13 = z2 - z4;
  938. tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
  939. z5 = z3 << CONST_BITS;
  940. z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
  941. z4 = z5 + tmp12;
  942. tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
  943. tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
  944. z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
  945. z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
  946. tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
  947. tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
  948. tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
  949. /* Final output stage */
  950. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  951. wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  952. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  953. wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  954. wsptr[8*2] = (int) (tmp22 + tmp12);
  955. wsptr[8*7] = (int) (tmp22 - tmp12);
  956. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
  957. wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
  958. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  959. wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  960. }
  961. /* Pass 2: process 10 rows from work array, store into output array. */
  962. wsptr = workspace;
  963. for (ctr = 0; ctr < 10; ctr++) {
  964. outptr = output_buf[ctr] + output_col;
  965. /* Even part */
  966. /* Add fudge factor here for final descale. */
  967. z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  968. z3 <<= CONST_BITS;
  969. z4 = (INT32) wsptr[4];
  970. z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
  971. z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
  972. tmp10 = z3 + z1;
  973. tmp11 = z3 - z2;
  974. tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
  975. z2 = (INT32) wsptr[2];
  976. z3 = (INT32) wsptr[6];
  977. z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
  978. tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
  979. tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
  980. tmp20 = tmp10 + tmp12;
  981. tmp24 = tmp10 - tmp12;
  982. tmp21 = tmp11 + tmp13;
  983. tmp23 = tmp11 - tmp13;
  984. /* Odd part */
  985. z1 = (INT32) wsptr[1];
  986. z2 = (INT32) wsptr[3];
  987. z3 = (INT32) wsptr[5];
  988. z3 <<= CONST_BITS;
  989. z4 = (INT32) wsptr[7];
  990. tmp11 = z2 + z4;
  991. tmp13 = z2 - z4;
  992. tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
  993. z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
  994. z4 = z3 + tmp12;
  995. tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
  996. tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
  997. z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
  998. z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
  999. tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
  1000. tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
  1001. tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
  1002. /* Final output stage */
  1003. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1004. CONST_BITS+PASS1_BITS+3)
  1005. & RANGE_MASK];
  1006. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1007. CONST_BITS+PASS1_BITS+3)
  1008. & RANGE_MASK];
  1009. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1010. CONST_BITS+PASS1_BITS+3)
  1011. & RANGE_MASK];
  1012. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1013. CONST_BITS+PASS1_BITS+3)
  1014. & RANGE_MASK];
  1015. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1016. CONST_BITS+PASS1_BITS+3)
  1017. & RANGE_MASK];
  1018. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1019. CONST_BITS+PASS1_BITS+3)
  1020. & RANGE_MASK];
  1021. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1022. CONST_BITS+PASS1_BITS+3)
  1023. & RANGE_MASK];
  1024. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1025. CONST_BITS+PASS1_BITS+3)
  1026. & RANGE_MASK];
  1027. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1028. CONST_BITS+PASS1_BITS+3)
  1029. & RANGE_MASK];
  1030. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1031. CONST_BITS+PASS1_BITS+3)
  1032. & RANGE_MASK];
  1033. wsptr += 8; /* advance pointer to next row */
  1034. }
  1035. }
  1036. /*
  1037. * Perform dequantization and inverse DCT on one block of coefficients,
  1038. * producing a 11x11 output block.
  1039. *
  1040. * Optimized algorithm with 24 multiplications in the 1-D kernel.
  1041. * cK represents sqrt(2) * cos(K*pi/22).
  1042. */
  1043. GLOBAL(void)
  1044. jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1045. JCOEFPTR coef_block,
  1046. JSAMPARRAY output_buf, JDIMENSION output_col)
  1047. {
  1048. INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
  1049. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
  1050. INT32 z1, z2, z3, z4;
  1051. JCOEFPTR inptr;
  1052. ISLOW_MULT_TYPE * quantptr;
  1053. int * wsptr;
  1054. JSAMPROW outptr;
  1055. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1056. int ctr;
  1057. int workspace[8*11]; /* buffers data between passes */
  1058. SHIFT_TEMPS
  1059. /* Pass 1: process columns from input, store into work array. */
  1060. inptr = coef_block;
  1061. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1062. wsptr = workspace;
  1063. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1064. /* Even part */
  1065. tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1066. tmp10 <<= CONST_BITS;
  1067. /* Add fudge factor here for final descale. */
  1068. tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
  1069. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1070. z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1071. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1072. tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
  1073. tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
  1074. z4 = z1 + z3;
  1075. tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
  1076. z4 -= z2;
  1077. tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
  1078. tmp21 = tmp20 + tmp23 + tmp25 -
  1079. MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
  1080. tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
  1081. tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
  1082. tmp24 += tmp25;
  1083. tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
  1084. tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
  1085. MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
  1086. tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
  1087. /* Odd part */
  1088. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  1089. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  1090. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  1091. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  1092. tmp11 = z1 + z2;
  1093. tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
  1094. tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
  1095. tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
  1096. tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
  1097. tmp10 = tmp11 + tmp12 + tmp13 -
  1098. MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
  1099. z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
  1100. tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
  1101. tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
  1102. z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
  1103. tmp11 += z1;
  1104. tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
  1105. tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
  1106. MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
  1107. MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
  1108. /* Final output stage */
  1109. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  1110. wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  1111. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  1112. wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  1113. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
  1114. wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
  1115. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
  1116. wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
  1117. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  1118. wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  1119. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
  1120. }
  1121. /* Pass 2: process 11 rows from work array, store into output array. */
  1122. wsptr = workspace;
  1123. for (ctr = 0; ctr < 11; ctr++) {
  1124. outptr = output_buf[ctr] + output_col;
  1125. /* Even part */
  1126. /* Add fudge factor here for final descale. */
  1127. tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  1128. tmp10 <<= CONST_BITS;
  1129. z1 = (INT32) wsptr[2];
  1130. z2 = (INT32) wsptr[4];
  1131. z3 = (INT32) wsptr[6];
  1132. tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
  1133. tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
  1134. z4 = z1 + z3;
  1135. tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
  1136. z4 -= z2;
  1137. tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
  1138. tmp21 = tmp20 + tmp23 + tmp25 -
  1139. MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
  1140. tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
  1141. tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
  1142. tmp24 += tmp25;
  1143. tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
  1144. tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
  1145. MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
  1146. tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
  1147. /* Odd part */
  1148. z1 = (INT32) wsptr[1];
  1149. z2 = (INT32) wsptr[3];
  1150. z3 = (INT32) wsptr[5];
  1151. z4 = (INT32) wsptr[7];
  1152. tmp11 = z1 + z2;
  1153. tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
  1154. tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
  1155. tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
  1156. tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
  1157. tmp10 = tmp11 + tmp12 + tmp13 -
  1158. MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
  1159. z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
  1160. tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
  1161. tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
  1162. z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
  1163. tmp11 += z1;
  1164. tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
  1165. tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
  1166. MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
  1167. MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
  1168. /* Final output stage */
  1169. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1170. CONST_BITS+PASS1_BITS+3)
  1171. & RANGE_MASK];
  1172. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1173. CONST_BITS+PASS1_BITS+3)
  1174. & RANGE_MASK];
  1175. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1176. CONST_BITS+PASS1_BITS+3)
  1177. & RANGE_MASK];
  1178. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1179. CONST_BITS+PASS1_BITS+3)
  1180. & RANGE_MASK];
  1181. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1182. CONST_BITS+PASS1_BITS+3)
  1183. & RANGE_MASK];
  1184. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1185. CONST_BITS+PASS1_BITS+3)
  1186. & RANGE_MASK];
  1187. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1188. CONST_BITS+PASS1_BITS+3)
  1189. & RANGE_MASK];
  1190. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1191. CONST_BITS+PASS1_BITS+3)
  1192. & RANGE_MASK];
  1193. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1194. CONST_BITS+PASS1_BITS+3)
  1195. & RANGE_MASK];
  1196. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1197. CONST_BITS+PASS1_BITS+3)
  1198. & RANGE_MASK];
  1199. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
  1200. CONST_BITS+PASS1_BITS+3)
  1201. & RANGE_MASK];
  1202. wsptr += 8; /* advance pointer to next row */
  1203. }
  1204. }
  1205. /*
  1206. * Perform dequantization and inverse DCT on one block of coefficients,
  1207. * producing a 12x12 output block.
  1208. *
  1209. * Optimized algorithm with 15 multiplications in the 1-D kernel.
  1210. * cK represents sqrt(2) * cos(K*pi/24).
  1211. */
  1212. GLOBAL(void)
  1213. jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1214. JCOEFPTR coef_block,
  1215. JSAMPARRAY output_buf, JDIMENSION output_col)
  1216. {
  1217. INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
  1218. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
  1219. INT32 z1, z2, z3, z4;
  1220. JCOEFPTR inptr;
  1221. ISLOW_MULT_TYPE * quantptr;
  1222. int * wsptr;
  1223. JSAMPROW outptr;
  1224. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1225. int ctr;
  1226. int workspace[8*12]; /* buffers data between passes */
  1227. SHIFT_TEMPS
  1228. /* Pass 1: process columns from input, store into work array. */
  1229. inptr = coef_block;
  1230. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1231. wsptr = workspace;
  1232. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1233. /* Even part */
  1234. z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1235. z3 <<= CONST_BITS;
  1236. /* Add fudge factor here for final descale. */
  1237. z3 += ONE << (CONST_BITS-PASS1_BITS-1);
  1238. z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1239. z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
  1240. tmp10 = z3 + z4;
  1241. tmp11 = z3 - z4;
  1242. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1243. z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
  1244. z1 <<= CONST_BITS;
  1245. z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1246. z2 <<= CONST_BITS;
  1247. tmp12 = z1 - z2;
  1248. tmp21 = z3 + tmp12;
  1249. tmp24 = z3 - tmp12;
  1250. tmp12 = z4 + z2;
  1251. tmp20 = tmp10 + tmp12;
  1252. tmp25 = tmp10 - tmp12;
  1253. tmp12 = z4 - z1 - z2;
  1254. tmp22 = tmp11 + tmp12;
  1255. tmp23 = tmp11 - tmp12;
  1256. /* Odd part */
  1257. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  1258. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  1259. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  1260. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  1261. tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
  1262. tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
  1263. tmp10 = z1 + z3;
  1264. tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
  1265. tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
  1266. tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
  1267. tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
  1268. tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
  1269. tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
  1270. tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
  1271. MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
  1272. z1 -= z4;
  1273. z2 -= z3;
  1274. z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
  1275. tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
  1276. tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
  1277. /* Final output stage */
  1278. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  1279. wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  1280. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  1281. wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  1282. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
  1283. wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
  1284. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
  1285. wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
  1286. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  1287. wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  1288. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
  1289. wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
  1290. }
  1291. /* Pass 2: process 12 rows from work array, store into output array. */
  1292. wsptr = workspace;
  1293. for (ctr = 0; ctr < 12; ctr++) {
  1294. outptr = output_buf[ctr] + output_col;
  1295. /* Even part */
  1296. /* Add fudge factor here for final descale. */
  1297. z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  1298. z3 <<= CONST_BITS;
  1299. z4 = (INT32) wsptr[4];
  1300. z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
  1301. tmp10 = z3 + z4;
  1302. tmp11 = z3 - z4;
  1303. z1 = (INT32) wsptr[2];
  1304. z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
  1305. z1 <<= CONST_BITS;
  1306. z2 = (INT32) wsptr[6];
  1307. z2 <<= CONST_BITS;
  1308. tmp12 = z1 - z2;
  1309. tmp21 = z3 + tmp12;
  1310. tmp24 = z3 - tmp12;
  1311. tmp12 = z4 + z2;
  1312. tmp20 = tmp10 + tmp12;
  1313. tmp25 = tmp10 - tmp12;
  1314. tmp12 = z4 - z1 - z2;
  1315. tmp22 = tmp11 + tmp12;
  1316. tmp23 = tmp11 - tmp12;
  1317. /* Odd part */
  1318. z1 = (INT32) wsptr[1];
  1319. z2 = (INT32) wsptr[3];
  1320. z3 = (INT32) wsptr[5];
  1321. z4 = (INT32) wsptr[7];
  1322. tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
  1323. tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
  1324. tmp10 = z1 + z3;
  1325. tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
  1326. tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
  1327. tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
  1328. tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
  1329. tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
  1330. tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
  1331. tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
  1332. MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
  1333. z1 -= z4;
  1334. z2 -= z3;
  1335. z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
  1336. tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
  1337. tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
  1338. /* Final output stage */
  1339. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1340. CONST_BITS+PASS1_BITS+3)
  1341. & RANGE_MASK];
  1342. outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1343. CONST_BITS+PASS1_BITS+3)
  1344. & RANGE_MASK];
  1345. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1346. CONST_BITS+PASS1_BITS+3)
  1347. & RANGE_MASK];
  1348. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1349. CONST_BITS+PASS1_BITS+3)
  1350. & RANGE_MASK];
  1351. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1352. CONST_BITS+PASS1_BITS+3)
  1353. & RANGE_MASK];
  1354. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1355. CONST_BITS+PASS1_BITS+3)
  1356. & RANGE_MASK];
  1357. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1358. CONST_BITS+PASS1_BITS+3)
  1359. & RANGE_MASK];
  1360. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1361. CONST_BITS+PASS1_BITS+3)
  1362. & RANGE_MASK];
  1363. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1364. CONST_BITS+PASS1_BITS+3)
  1365. & RANGE_MASK];
  1366. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1367. CONST_BITS+PASS1_BITS+3)
  1368. & RANGE_MASK];
  1369. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
  1370. CONST_BITS+PASS1_BITS+3)
  1371. & RANGE_MASK];
  1372. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
  1373. CONST_BITS+PASS1_BITS+3)
  1374. & RANGE_MASK];
  1375. wsptr += 8; /* advance pointer to next row */
  1376. }
  1377. }
  1378. /*
  1379. * Perform dequantization and inverse DCT on one block of coefficients,
  1380. * producing a 13x13 output block.
  1381. *
  1382. * Optimized algorithm with 29 multiplications in the 1-D kernel.
  1383. * cK represents sqrt(2) * cos(K*pi/26).
  1384. */
  1385. GLOBAL(void)
  1386. jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1387. JCOEFPTR coef_block,
  1388. JSAMPARRAY output_buf, JDIMENSION output_col)
  1389. {
  1390. INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
  1391. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
  1392. INT32 z1, z2, z3, z4;
  1393. JCOEFPTR inptr;
  1394. ISLOW_MULT_TYPE * quantptr;
  1395. int * wsptr;
  1396. JSAMPROW outptr;
  1397. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1398. int ctr;
  1399. int workspace[8*13]; /* buffers data between passes */
  1400. SHIFT_TEMPS
  1401. /* Pass 1: process columns from input, store into work array. */
  1402. inptr = coef_block;
  1403. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1404. wsptr = workspace;
  1405. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1406. /* Even part */
  1407. z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1408. z1 <<= CONST_BITS;
  1409. /* Add fudge factor here for final descale. */
  1410. z1 += ONE << (CONST_BITS-PASS1_BITS-1);
  1411. z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1412. z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1413. z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1414. tmp10 = z3 + z4;
  1415. tmp11 = z3 - z4;
  1416. tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
  1417. tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
  1418. tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
  1419. tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
  1420. tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
  1421. tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
  1422. tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
  1423. tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
  1424. tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
  1425. tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
  1426. tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
  1427. tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
  1428. tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
  1429. /* Odd part */
  1430. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  1431. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  1432. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  1433. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  1434. tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
  1435. tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
  1436. tmp15 = z1 + z4;
  1437. tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
  1438. tmp10 = tmp11 + tmp12 + tmp13 -
  1439. MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
  1440. tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
  1441. tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
  1442. tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
  1443. tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
  1444. tmp11 += tmp14;
  1445. tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
  1446. tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
  1447. tmp12 += tmp14;
  1448. tmp13 += tmp14;
  1449. tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
  1450. tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
  1451. MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
  1452. z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
  1453. tmp14 += z1;
  1454. tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
  1455. MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
  1456. /* Final output stage */
  1457. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  1458. wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  1459. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  1460. wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  1461. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
  1462. wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
  1463. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
  1464. wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
  1465. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  1466. wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  1467. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
  1468. wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
  1469. wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
  1470. }
  1471. /* Pass 2: process 13 rows from work array, store into output array. */
  1472. wsptr = workspace;
  1473. for (ctr = 0; ctr < 13; ctr++) {
  1474. outptr = output_buf[ctr] + output_col;
  1475. /* Even part */
  1476. /* Add fudge factor here for final descale. */
  1477. z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  1478. z1 <<= CONST_BITS;
  1479. z2 = (INT32) wsptr[2];
  1480. z3 = (INT32) wsptr[4];
  1481. z4 = (INT32) wsptr[6];
  1482. tmp10 = z3 + z4;
  1483. tmp11 = z3 - z4;
  1484. tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
  1485. tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
  1486. tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
  1487. tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
  1488. tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
  1489. tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
  1490. tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
  1491. tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
  1492. tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
  1493. tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
  1494. tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
  1495. tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
  1496. tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
  1497. /* Odd part */
  1498. z1 = (INT32) wsptr[1];
  1499. z2 = (INT32) wsptr[3];
  1500. z3 = (INT32) wsptr[5];
  1501. z4 = (INT32) wsptr[7];
  1502. tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
  1503. tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
  1504. tmp15 = z1 + z4;
  1505. tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
  1506. tmp10 = tmp11 + tmp12 + tmp13 -
  1507. MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
  1508. tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
  1509. tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
  1510. tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
  1511. tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
  1512. tmp11 += tmp14;
  1513. tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
  1514. tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
  1515. tmp12 += tmp14;
  1516. tmp13 += tmp14;
  1517. tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
  1518. tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
  1519. MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
  1520. z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
  1521. tmp14 += z1;
  1522. tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
  1523. MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
  1524. /* Final output stage */
  1525. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1526. CONST_BITS+PASS1_BITS+3)
  1527. & RANGE_MASK];
  1528. outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1529. CONST_BITS+PASS1_BITS+3)
  1530. & RANGE_MASK];
  1531. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1532. CONST_BITS+PASS1_BITS+3)
  1533. & RANGE_MASK];
  1534. outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1535. CONST_BITS+PASS1_BITS+3)
  1536. & RANGE_MASK];
  1537. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1538. CONST_BITS+PASS1_BITS+3)
  1539. & RANGE_MASK];
  1540. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1541. CONST_BITS+PASS1_BITS+3)
  1542. & RANGE_MASK];
  1543. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1544. CONST_BITS+PASS1_BITS+3)
  1545. & RANGE_MASK];
  1546. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1547. CONST_BITS+PASS1_BITS+3)
  1548. & RANGE_MASK];
  1549. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1550. CONST_BITS+PASS1_BITS+3)
  1551. & RANGE_MASK];
  1552. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1553. CONST_BITS+PASS1_BITS+3)
  1554. & RANGE_MASK];
  1555. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
  1556. CONST_BITS+PASS1_BITS+3)
  1557. & RANGE_MASK];
  1558. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
  1559. CONST_BITS+PASS1_BITS+3)
  1560. & RANGE_MASK];
  1561. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
  1562. CONST_BITS+PASS1_BITS+3)
  1563. & RANGE_MASK];
  1564. wsptr += 8; /* advance pointer to next row */
  1565. }
  1566. }
  1567. /*
  1568. * Perform dequantization and inverse DCT on one block of coefficients,
  1569. * producing a 14x14 output block.
  1570. *
  1571. * Optimized algorithm with 20 multiplications in the 1-D kernel.
  1572. * cK represents sqrt(2) * cos(K*pi/28).
  1573. */
  1574. GLOBAL(void)
  1575. jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1576. JCOEFPTR coef_block,
  1577. JSAMPARRAY output_buf, JDIMENSION output_col)
  1578. {
  1579. INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
  1580. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
  1581. INT32 z1, z2, z3, z4;
  1582. JCOEFPTR inptr;
  1583. ISLOW_MULT_TYPE * quantptr;
  1584. int * wsptr;
  1585. JSAMPROW outptr;
  1586. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1587. int ctr;
  1588. int workspace[8*14]; /* buffers data between passes */
  1589. SHIFT_TEMPS
  1590. /* Pass 1: process columns from input, store into work array. */
  1591. inptr = coef_block;
  1592. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1593. wsptr = workspace;
  1594. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1595. /* Even part */
  1596. z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1597. z1 <<= CONST_BITS;
  1598. /* Add fudge factor here for final descale. */
  1599. z1 += ONE << (CONST_BITS-PASS1_BITS-1);
  1600. z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1601. z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
  1602. z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
  1603. z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
  1604. tmp10 = z1 + z2;
  1605. tmp11 = z1 + z3;
  1606. tmp12 = z1 - z4;
  1607. tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
  1608. CONST_BITS-PASS1_BITS);
  1609. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1610. z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1611. z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
  1612. tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
  1613. tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
  1614. tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
  1615. MULTIPLY(z2, FIX(1.378756276)); /* c2 */
  1616. tmp20 = tmp10 + tmp13;
  1617. tmp26 = tmp10 - tmp13;
  1618. tmp21 = tmp11 + tmp14;
  1619. tmp25 = tmp11 - tmp14;
  1620. tmp22 = tmp12 + tmp15;
  1621. tmp24 = tmp12 - tmp15;
  1622. /* Odd part */
  1623. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  1624. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  1625. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  1626. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  1627. tmp13 = z4 << CONST_BITS;
  1628. tmp14 = z1 + z3;
  1629. tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
  1630. tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
  1631. tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
  1632. tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
  1633. tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
  1634. z1 -= z2;
  1635. tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
  1636. tmp16 += tmp15;
  1637. z1 += z4;
  1638. z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
  1639. tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
  1640. tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
  1641. z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
  1642. tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
  1643. tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
  1644. tmp13 = (z1 - z3) << PASS1_BITS;
  1645. /* Final output stage */
  1646. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  1647. wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  1648. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  1649. wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  1650. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
  1651. wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
  1652. wsptr[8*3] = (int) (tmp23 + tmp13);
  1653. wsptr[8*10] = (int) (tmp23 - tmp13);
  1654. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  1655. wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  1656. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
  1657. wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
  1658. wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
  1659. wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
  1660. }
  1661. /* Pass 2: process 14 rows from work array, store into output array. */
  1662. wsptr = workspace;
  1663. for (ctr = 0; ctr < 14; ctr++) {
  1664. outptr = output_buf[ctr] + output_col;
  1665. /* Even part */
  1666. /* Add fudge factor here for final descale. */
  1667. z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  1668. z1 <<= CONST_BITS;
  1669. z4 = (INT32) wsptr[4];
  1670. z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
  1671. z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
  1672. z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
  1673. tmp10 = z1 + z2;
  1674. tmp11 = z1 + z3;
  1675. tmp12 = z1 - z4;
  1676. tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
  1677. z1 = (INT32) wsptr[2];
  1678. z2 = (INT32) wsptr[6];
  1679. z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
  1680. tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
  1681. tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
  1682. tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
  1683. MULTIPLY(z2, FIX(1.378756276)); /* c2 */
  1684. tmp20 = tmp10 + tmp13;
  1685. tmp26 = tmp10 - tmp13;
  1686. tmp21 = tmp11 + tmp14;
  1687. tmp25 = tmp11 - tmp14;
  1688. tmp22 = tmp12 + tmp15;
  1689. tmp24 = tmp12 - tmp15;
  1690. /* Odd part */
  1691. z1 = (INT32) wsptr[1];
  1692. z2 = (INT32) wsptr[3];
  1693. z3 = (INT32) wsptr[5];
  1694. z4 = (INT32) wsptr[7];
  1695. z4 <<= CONST_BITS;
  1696. tmp14 = z1 + z3;
  1697. tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
  1698. tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
  1699. tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
  1700. tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
  1701. tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
  1702. z1 -= z2;
  1703. tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
  1704. tmp16 += tmp15;
  1705. tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
  1706. tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
  1707. tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
  1708. tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
  1709. tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
  1710. tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
  1711. tmp13 = ((z1 - z3) << CONST_BITS) + z4;
  1712. /* Final output stage */
  1713. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1714. CONST_BITS+PASS1_BITS+3)
  1715. & RANGE_MASK];
  1716. outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1717. CONST_BITS+PASS1_BITS+3)
  1718. & RANGE_MASK];
  1719. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1720. CONST_BITS+PASS1_BITS+3)
  1721. & RANGE_MASK];
  1722. outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1723. CONST_BITS+PASS1_BITS+3)
  1724. & RANGE_MASK];
  1725. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1726. CONST_BITS+PASS1_BITS+3)
  1727. & RANGE_MASK];
  1728. outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1729. CONST_BITS+PASS1_BITS+3)
  1730. & RANGE_MASK];
  1731. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1732. CONST_BITS+PASS1_BITS+3)
  1733. & RANGE_MASK];
  1734. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1735. CONST_BITS+PASS1_BITS+3)
  1736. & RANGE_MASK];
  1737. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1738. CONST_BITS+PASS1_BITS+3)
  1739. & RANGE_MASK];
  1740. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1741. CONST_BITS+PASS1_BITS+3)
  1742. & RANGE_MASK];
  1743. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
  1744. CONST_BITS+PASS1_BITS+3)
  1745. & RANGE_MASK];
  1746. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
  1747. CONST_BITS+PASS1_BITS+3)
  1748. & RANGE_MASK];
  1749. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
  1750. CONST_BITS+PASS1_BITS+3)
  1751. & RANGE_MASK];
  1752. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
  1753. CONST_BITS+PASS1_BITS+3)
  1754. & RANGE_MASK];
  1755. wsptr += 8; /* advance pointer to next row */
  1756. }
  1757. }
  1758. /*
  1759. * Perform dequantization and inverse DCT on one block of coefficients,
  1760. * producing a 15x15 output block.
  1761. *
  1762. * Optimized algorithm with 22 multiplications in the 1-D kernel.
  1763. * cK represents sqrt(2) * cos(K*pi/30).
  1764. */
  1765. GLOBAL(void)
  1766. jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1767. JCOEFPTR coef_block,
  1768. JSAMPARRAY output_buf, JDIMENSION output_col)
  1769. {
  1770. INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
  1771. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
  1772. INT32 z1, z2, z3, z4;
  1773. JCOEFPTR inptr;
  1774. ISLOW_MULT_TYPE * quantptr;
  1775. int * wsptr;
  1776. JSAMPROW outptr;
  1777. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1778. int ctr;
  1779. int workspace[8*15]; /* buffers data between passes */
  1780. SHIFT_TEMPS
  1781. /* Pass 1: process columns from input, store into work array. */
  1782. inptr = coef_block;
  1783. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1784. wsptr = workspace;
  1785. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1786. /* Even part */
  1787. z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1788. z1 <<= CONST_BITS;
  1789. /* Add fudge factor here for final descale. */
  1790. z1 += ONE << (CONST_BITS-PASS1_BITS-1);
  1791. z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1792. z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1793. z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1794. tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
  1795. tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
  1796. tmp12 = z1 - tmp10;
  1797. tmp13 = z1 + tmp11;
  1798. z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
  1799. z4 = z2 - z3;
  1800. z3 += z2;
  1801. tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
  1802. tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
  1803. z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
  1804. tmp20 = tmp13 + tmp10 + tmp11;
  1805. tmp23 = tmp12 - tmp10 + tmp11 + z2;
  1806. tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
  1807. tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
  1808. tmp25 = tmp13 - tmp10 - tmp11;
  1809. tmp26 = tmp12 + tmp10 - tmp11 - z2;
  1810. tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
  1811. tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
  1812. tmp21 = tmp12 + tmp10 + tmp11;
  1813. tmp24 = tmp13 - tmp10 + tmp11;
  1814. tmp11 += tmp11;
  1815. tmp22 = z1 + tmp11; /* c10 = c6-c12 */
  1816. tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
  1817. /* Odd part */
  1818. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  1819. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  1820. z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  1821. z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
  1822. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  1823. tmp13 = z2 - z4;
  1824. tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
  1825. tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
  1826. tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
  1827. tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
  1828. tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
  1829. z2 = z1 - z4;
  1830. tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
  1831. tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
  1832. tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
  1833. tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
  1834. z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
  1835. tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
  1836. tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
  1837. /* Final output stage */
  1838. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
  1839. wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
  1840. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
  1841. wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
  1842. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
  1843. wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
  1844. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
  1845. wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
  1846. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
  1847. wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
  1848. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
  1849. wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
  1850. wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
  1851. wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
  1852. wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
  1853. }
  1854. /* Pass 2: process 15 rows from work array, store into output array. */
  1855. wsptr = workspace;
  1856. for (ctr = 0; ctr < 15; ctr++) {
  1857. outptr = output_buf[ctr] + output_col;
  1858. /* Even part */
  1859. /* Add fudge factor here for final descale. */
  1860. z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  1861. z1 <<= CONST_BITS;
  1862. z2 = (INT32) wsptr[2];
  1863. z3 = (INT32) wsptr[4];
  1864. z4 = (INT32) wsptr[6];
  1865. tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
  1866. tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
  1867. tmp12 = z1 - tmp10;
  1868. tmp13 = z1 + tmp11;
  1869. z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
  1870. z4 = z2 - z3;
  1871. z3 += z2;
  1872. tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
  1873. tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
  1874. z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
  1875. tmp20 = tmp13 + tmp10 + tmp11;
  1876. tmp23 = tmp12 - tmp10 + tmp11 + z2;
  1877. tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
  1878. tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
  1879. tmp25 = tmp13 - tmp10 - tmp11;
  1880. tmp26 = tmp12 + tmp10 - tmp11 - z2;
  1881. tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
  1882. tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
  1883. tmp21 = tmp12 + tmp10 + tmp11;
  1884. tmp24 = tmp13 - tmp10 + tmp11;
  1885. tmp11 += tmp11;
  1886. tmp22 = z1 + tmp11; /* c10 = c6-c12 */
  1887. tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
  1888. /* Odd part */
  1889. z1 = (INT32) wsptr[1];
  1890. z2 = (INT32) wsptr[3];
  1891. z4 = (INT32) wsptr[5];
  1892. z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
  1893. z4 = (INT32) wsptr[7];
  1894. tmp13 = z2 - z4;
  1895. tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
  1896. tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
  1897. tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
  1898. tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
  1899. tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
  1900. z2 = z1 - z4;
  1901. tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
  1902. tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
  1903. tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
  1904. tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
  1905. z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
  1906. tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
  1907. tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
  1908. /* Final output stage */
  1909. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
  1910. CONST_BITS+PASS1_BITS+3)
  1911. & RANGE_MASK];
  1912. outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
  1913. CONST_BITS+PASS1_BITS+3)
  1914. & RANGE_MASK];
  1915. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
  1916. CONST_BITS+PASS1_BITS+3)
  1917. & RANGE_MASK];
  1918. outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
  1919. CONST_BITS+PASS1_BITS+3)
  1920. & RANGE_MASK];
  1921. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
  1922. CONST_BITS+PASS1_BITS+3)
  1923. & RANGE_MASK];
  1924. outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
  1925. CONST_BITS+PASS1_BITS+3)
  1926. & RANGE_MASK];
  1927. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
  1928. CONST_BITS+PASS1_BITS+3)
  1929. & RANGE_MASK];
  1930. outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
  1931. CONST_BITS+PASS1_BITS+3)
  1932. & RANGE_MASK];
  1933. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
  1934. CONST_BITS+PASS1_BITS+3)
  1935. & RANGE_MASK];
  1936. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
  1937. CONST_BITS+PASS1_BITS+3)
  1938. & RANGE_MASK];
  1939. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
  1940. CONST_BITS+PASS1_BITS+3)
  1941. & RANGE_MASK];
  1942. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
  1943. CONST_BITS+PASS1_BITS+3)
  1944. & RANGE_MASK];
  1945. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
  1946. CONST_BITS+PASS1_BITS+3)
  1947. & RANGE_MASK];
  1948. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
  1949. CONST_BITS+PASS1_BITS+3)
  1950. & RANGE_MASK];
  1951. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
  1952. CONST_BITS+PASS1_BITS+3)
  1953. & RANGE_MASK];
  1954. wsptr += 8; /* advance pointer to next row */
  1955. }
  1956. }
  1957. /*
  1958. * Perform dequantization and inverse DCT on one block of coefficients,
  1959. * producing a 16x16 output block.
  1960. *
  1961. * Optimized algorithm with 28 multiplications in the 1-D kernel.
  1962. * cK represents sqrt(2) * cos(K*pi/32).
  1963. */
  1964. GLOBAL(void)
  1965. jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  1966. JCOEFPTR coef_block,
  1967. JSAMPARRAY output_buf, JDIMENSION output_col)
  1968. {
  1969. INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
  1970. INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
  1971. INT32 z1, z2, z3, z4;
  1972. JCOEFPTR inptr;
  1973. ISLOW_MULT_TYPE * quantptr;
  1974. int * wsptr;
  1975. JSAMPROW outptr;
  1976. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  1977. int ctr;
  1978. int workspace[8*16]; /* buffers data between passes */
  1979. SHIFT_TEMPS
  1980. /* Pass 1: process columns from input, store into work array. */
  1981. inptr = coef_block;
  1982. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  1983. wsptr = workspace;
  1984. for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
  1985. /* Even part */
  1986. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  1987. tmp0 <<= CONST_BITS;
  1988. /* Add fudge factor here for final descale. */
  1989. tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
  1990. z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  1991. tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
  1992. tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
  1993. tmp10 = tmp0 + tmp1;
  1994. tmp11 = tmp0 - tmp1;
  1995. tmp12 = tmp0 + tmp2;
  1996. tmp13 = tmp0 - tmp2;
  1997. z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  1998. z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  1999. z3 = z1 - z2;
  2000. z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
  2001. z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
  2002. tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
  2003. tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
  2004. tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
  2005. tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
  2006. tmp20 = tmp10 + tmp0;
  2007. tmp27 = tmp10 - tmp0;
  2008. tmp21 = tmp12 + tmp1;
  2009. tmp26 = tmp12 - tmp1;
  2010. tmp22 = tmp13 + tmp2;
  2011. tmp25 = tmp13 - tmp2;
  2012. tmp23 = tmp11 + tmp3;
  2013. tmp24 = tmp11 - tmp3;
  2014. /* Odd part */
  2015. z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  2016. z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  2017. z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  2018. z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  2019. tmp11 = z1 + z3;
  2020. tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
  2021. tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
  2022. tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
  2023. tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
  2024. tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
  2025. tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
  2026. tmp0 = tmp1 + tmp2 + tmp3 -
  2027. MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
  2028. tmp13 = tmp10 + tmp11 + tmp12 -
  2029. MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
  2030. z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
  2031. tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
  2032. tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
  2033. z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
  2034. tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
  2035. tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
  2036. z2 += z4;
  2037. z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
  2038. tmp1 += z1;
  2039. tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
  2040. z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
  2041. tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
  2042. tmp12 += z2;
  2043. z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
  2044. tmp2 += z2;
  2045. tmp3 += z2;
  2046. z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
  2047. tmp10 += z2;
  2048. tmp11 += z2;
  2049. /* Final output stage */
  2050. wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
  2051. wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
  2052. wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
  2053. wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
  2054. wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
  2055. wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
  2056. wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
  2057. wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
  2058. wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
  2059. wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
  2060. wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
  2061. wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
  2062. wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
  2063. wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
  2064. wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
  2065. wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
  2066. }
  2067. /* Pass 2: process 16 rows from work array, store into output array. */
  2068. wsptr = workspace;
  2069. for (ctr = 0; ctr < 16; ctr++) {
  2070. outptr = output_buf[ctr] + output_col;
  2071. /* Even part */
  2072. /* Add fudge factor here for final descale. */
  2073. tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
  2074. tmp0 <<= CONST_BITS;
  2075. z1 = (INT32) wsptr[4];
  2076. tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
  2077. tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
  2078. tmp10 = tmp0 + tmp1;
  2079. tmp11 = tmp0 - tmp1;
  2080. tmp12 = tmp0 + tmp2;
  2081. tmp13 = tmp0 - tmp2;
  2082. z1 = (INT32) wsptr[2];
  2083. z2 = (INT32) wsptr[6];
  2084. z3 = z1 - z2;
  2085. z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
  2086. z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
  2087. tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
  2088. tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
  2089. tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
  2090. tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
  2091. tmp20 = tmp10 + tmp0;
  2092. tmp27 = tmp10 - tmp0;
  2093. tmp21 = tmp12 + tmp1;
  2094. tmp26 = tmp12 - tmp1;
  2095. tmp22 = tmp13 + tmp2;
  2096. tmp25 = tmp13 - tmp2;
  2097. tmp23 = tmp11 + tmp3;
  2098. tmp24 = tmp11 - tmp3;
  2099. /* Odd part */
  2100. z1 = (INT32) wsptr[1];
  2101. z2 = (INT32) wsptr[3];
  2102. z3 = (INT32) wsptr[5];
  2103. z4 = (INT32) wsptr[7];
  2104. tmp11 = z1 + z3;
  2105. tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
  2106. tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
  2107. tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
  2108. tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
  2109. tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
  2110. tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
  2111. tmp0 = tmp1 + tmp2 + tmp3 -
  2112. MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
  2113. tmp13 = tmp10 + tmp11 + tmp12 -
  2114. MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
  2115. z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
  2116. tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
  2117. tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
  2118. z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
  2119. tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
  2120. tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
  2121. z2 += z4;
  2122. z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
  2123. tmp1 += z1;
  2124. tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
  2125. z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
  2126. tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
  2127. tmp12 += z2;
  2128. z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
  2129. tmp2 += z2;
  2130. tmp3 += z2;
  2131. z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
  2132. tmp10 += z2;
  2133. tmp11 += z2;
  2134. /* Final output stage */
  2135. outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
  2136. CONST_BITS+PASS1_BITS+3)
  2137. & RANGE_MASK];
  2138. outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
  2139. CONST_BITS+PASS1_BITS+3)
  2140. & RANGE_MASK];
  2141. outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
  2142. CONST_BITS+PASS1_BITS+3)
  2143. & RANGE_MASK];
  2144. outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
  2145. CONST_BITS+PASS1_BITS+3)
  2146. & RANGE_MASK];
  2147. outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
  2148. CONST_BITS+PASS1_BITS+3)
  2149. & RANGE_MASK];
  2150. outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
  2151. CONST_BITS+PASS1_BITS+3)
  2152. & RANGE_MASK];
  2153. outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
  2154. CONST_BITS+PASS1_BITS+3)
  2155. & RANGE_MASK];
  2156. outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
  2157. CONST_BITS+PASS1_BITS+3)
  2158. & RANGE_MASK];
  2159. outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
  2160. CONST_BITS+PASS1_BITS+3)
  2161. & RANGE_MASK];
  2162. outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
  2163. CONST_BITS+PASS1_BITS+3)
  2164. & RANGE_MASK];
  2165. outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
  2166. CONST_BITS+PASS1_BITS+3)
  2167. & RANGE_MASK];
  2168. outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
  2169. CONST_BITS+PASS1_BITS+3)
  2170. & RANGE_MASK];
  2171. outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
  2172. CONST_BITS+PASS1_BITS+3)
  2173. & RANGE_MASK];
  2174. outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
  2175. CONST_BITS+PASS1_BITS+3)
  2176. & RANGE_MASK];
  2177. outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
  2178. CONST_BITS+PASS1_BITS+3)
  2179. & RANGE_MASK];
  2180. outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
  2181. CONST_BITS+PASS1_BITS+3)
  2182. & RANGE_MASK];
  2183. wsptr += 8; /* advance pointer to next row */
  2184. }
  2185. }
  2186. #endif /* IDCT_SCALING_SUPPORTED */
  2187. #endif /* DCT_ISLOW_SUPPORTED */