| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2011 by Chris Robinson
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <stdlib.h>
- #include <ctype.h>
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alSource.h"
- #include "alu.h"
- #ifndef PATH_MAX
- #define PATH_MAX 4096
- #endif
- /* Current data set limits defined by the makehrtf utility. */
- #define MIN_IR_SIZE (8)
- #define MAX_IR_SIZE (128)
- #define MOD_IR_SIZE (8)
- #define MIN_EV_COUNT (5)
- #define MAX_EV_COUNT (128)
- #define MIN_AZ_COUNT (1)
- #define MAX_AZ_COUNT (128)
- struct Hrtf {
- ALuint sampleRate;
- ALuint irSize;
- ALubyte evCount;
- const ALubyte *azCount;
- const ALushort *evOffset;
- const ALshort *coeffs;
- const ALubyte *delays;
- struct Hrtf *next;
- };
- static const ALchar magicMarker00[8] = "MinPHR00";
- static const ALchar magicMarker01[8] = "MinPHR01";
- /* Define the default HRTF:
- * ALubyte defaultAzCount [DefaultHrtf.evCount]
- * ALushort defaultEvOffset [DefaultHrtf.evCount]
- * ALshort defaultCoeffs [DefaultHrtf.irCount * defaultHrtf.irSize]
- * ALubyte defaultDelays [DefaultHrtf.irCount]
- *
- * struct Hrtf DefaultHrtf
- */
- #include "hrtf_tables.inc"
- static struct Hrtf *LoadedHrtfs = NULL;
- /* Calculate the elevation indices given the polar elevation in radians.
- * This will return two indices between 0 and (Hrtf->evCount - 1) and an
- * interpolation factor between 0.0 and 1.0.
- */
- static void CalcEvIndices(const struct Hrtf *Hrtf, ALfloat ev, ALuint *evidx, ALfloat *evmu)
- {
- ev = (F_PI_2 + ev) * (Hrtf->evCount-1) / F_PI;
- evidx[0] = fastf2u(ev);
- evidx[1] = minu(evidx[0] + 1, Hrtf->evCount-1);
- *evmu = ev - evidx[0];
- }
- /* Calculate the azimuth indices given the polar azimuth in radians. This
- * will return two indices between 0 and (Hrtf->azCount[ei] - 1) and an
- * interpolation factor between 0.0 and 1.0.
- */
- static void CalcAzIndices(const struct Hrtf *Hrtf, ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
- {
- az = (F_2PI + az) * Hrtf->azCount[evidx] / (F_2PI);
- azidx[0] = fastf2u(az) % Hrtf->azCount[evidx];
- azidx[1] = (azidx[0] + 1) % Hrtf->azCount[evidx];
- *azmu = az - floorf(az);
- }
- /* Calculates the normalized HRTF transition factor (delta) from the changes
- * in gain and listener to source angle between updates. The result is a
- * normalized delta factor that can be used to calculate moving HRIR stepping
- * values.
- */
- ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
- {
- ALfloat gainChange, angleChange, change;
- // Calculate the normalized dB gain change.
- newGain = maxf(newGain, 0.0001f);
- oldGain = maxf(oldGain, 0.0001f);
- gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
- // Calculate the normalized listener to source angle change when there is
- // enough gain to notice it.
- angleChange = 0.0f;
- if(gainChange > 0.0001f || newGain > 0.0001f)
- {
- // No angle change when the directions are equal or degenerate (when
- // both have zero length).
- if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2])
- angleChange = acosf(olddir[0]*newdir[0] +
- olddir[1]*newdir[1] +
- olddir[2]*newdir[2]) / F_PI;
- }
- // Use the largest of the two changes for the delta factor, and apply a
- // significance shaping function to it.
- change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
- return minf(change, 1.0f);
- }
- /* Calculates static HRIR coefficients and delays for the given polar
- * elevation and azimuth in radians. Linear interpolation is used to
- * increase the apparent resolution of the HRIR data set. The coefficients
- * are also normalized and attenuated by the specified gain.
- */
- void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
- {
- ALuint evidx[2], azidx[2];
- ALuint lidx[4], ridx[4];
- ALfloat mu[3], blend[4];
- ALuint i;
- // Claculate elevation indices and interpolation factor.
- CalcEvIndices(Hrtf, elevation, evidx, &mu[2]);
- // Calculate azimuth indices and interpolation factor for the first
- // elevation.
- CalcAzIndices(Hrtf, evidx[0], azimuth, azidx, &mu[0]);
- // Calculate the first set of linear HRIR indices for left and right
- // channels.
- lidx[0] = Hrtf->evOffset[evidx[0]] + azidx[0];
- lidx[1] = Hrtf->evOffset[evidx[0]] + azidx[1];
- ridx[0] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[0]) % Hrtf->azCount[evidx[0]]);
- ridx[1] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[1]) % Hrtf->azCount[evidx[0]]);
- // Calculate azimuth indices and interpolation factor for the second
- // elevation.
- CalcAzIndices(Hrtf, evidx[1], azimuth, azidx, &mu[1]);
- // Calculate the second set of linear HRIR indices for left and right
- // channels.
- lidx[2] = Hrtf->evOffset[evidx[1]] + azidx[0];
- lidx[3] = Hrtf->evOffset[evidx[1]] + azidx[1];
- ridx[2] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[0]) % Hrtf->azCount[evidx[1]]);
- ridx[3] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[1]) % Hrtf->azCount[evidx[1]]);
- /* Calculate 4 blending weights for 2D bilinear interpolation. */
- blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
- blend[1] = ( mu[0]) * (1.0f-mu[2]);
- blend[2] = (1.0f-mu[1]) * ( mu[2]);
- blend[3] = ( mu[1]) * ( mu[2]);
- /* Calculate the HRIR delays using linear interpolation. */
- delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- /* Calculate the sample offsets for the HRIR indices. */
- lidx[0] *= Hrtf->irSize;
- lidx[1] *= Hrtf->irSize;
- lidx[2] *= Hrtf->irSize;
- lidx[3] *= Hrtf->irSize;
- ridx[0] *= Hrtf->irSize;
- ridx[1] *= Hrtf->irSize;
- ridx[2] *= Hrtf->irSize;
- ridx[3] *= Hrtf->irSize;
- /* Calculate the normalized and attenuated HRIR coefficients using linear
- * interpolation when there is enough gain to warrant it. Zero the
- * coefficients if gain is too low.
- */
- if(gain > 0.0001f)
- {
- gain *= 1.0f/32767.0f;
- for(i = 0;i < Hrtf->irSize;i++)
- {
- coeffs[i][0] = (Hrtf->coeffs[lidx[0]+i]*blend[0] +
- Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] +
- Hrtf->coeffs[lidx[3]+i]*blend[3]) * gain;
- coeffs[i][1] = (Hrtf->coeffs[ridx[0]+i]*blend[0] +
- Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] +
- Hrtf->coeffs[ridx[3]+i]*blend[3]) * gain;
- }
- }
- else
- {
- for(i = 0;i < Hrtf->irSize;i++)
- {
- coeffs[i][0] = 0.0f;
- coeffs[i][1] = 0.0f;
- }
- }
- }
- /* Calculates the moving HRIR target coefficients, target delays, and
- * stepping values for the given polar elevation and azimuth in radians.
- * Linear interpolation is used to increase the apparent resolution of the
- * HRIR data set. The coefficients are also normalized and attenuated by the
- * specified gain. Stepping resolution and count is determined using the
- * given delta factor between 0.0 and 1.0.
- */
- ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
- {
- ALuint evidx[2], azidx[2];
- ALuint lidx[4], ridx[4];
- ALfloat mu[3], blend[4];
- ALfloat left, right;
- ALfloat step;
- ALuint i;
- // Claculate elevation indices and interpolation factor.
- CalcEvIndices(Hrtf, elevation, evidx, &mu[2]);
- // Calculate azimuth indices and interpolation factor for the first
- // elevation.
- CalcAzIndices(Hrtf, evidx[0], azimuth, azidx, &mu[0]);
- // Calculate the first set of linear HRIR indices for left and right
- // channels.
- lidx[0] = Hrtf->evOffset[evidx[0]] + azidx[0];
- lidx[1] = Hrtf->evOffset[evidx[0]] + azidx[1];
- ridx[0] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[0]) % Hrtf->azCount[evidx[0]]);
- ridx[1] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[1]) % Hrtf->azCount[evidx[0]]);
- // Calculate azimuth indices and interpolation factor for the second
- // elevation.
- CalcAzIndices(Hrtf, evidx[1], azimuth, azidx, &mu[1]);
- // Calculate the second set of linear HRIR indices for left and right
- // channels.
- lidx[2] = Hrtf->evOffset[evidx[1]] + azidx[0];
- lidx[3] = Hrtf->evOffset[evidx[1]] + azidx[1];
- ridx[2] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[0]) % Hrtf->azCount[evidx[1]]);
- ridx[3] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[1]) % Hrtf->azCount[evidx[1]]);
- // Calculate the stepping parameters.
- delta = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
- step = 1.0f / delta;
- /* Calculate 4 blending weights for 2D bilinear interpolation. */
- blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
- blend[1] = ( mu[0]) * (1.0f-mu[2]);
- blend[2] = (1.0f-mu[1]) * ( mu[2]);
- blend[3] = ( mu[1]) * ( mu[2]);
- /* Calculate the HRIR delays using linear interpolation. Then calculate
- * the delay stepping values using the target and previous running
- * delays.
- */
- left = (ALfloat)(delays[0] - (delayStep[0] * counter));
- right = (ALfloat)(delays[1] - (delayStep[1] * counter));
- delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- delayStep[0] = fastf2i(step * (delays[0] - left));
- delayStep[1] = fastf2i(step * (delays[1] - right));
- /* Calculate the sample offsets for the HRIR indices. */
- lidx[0] *= Hrtf->irSize;
- lidx[1] *= Hrtf->irSize;
- lidx[2] *= Hrtf->irSize;
- lidx[3] *= Hrtf->irSize;
- ridx[0] *= Hrtf->irSize;
- ridx[1] *= Hrtf->irSize;
- ridx[2] *= Hrtf->irSize;
- ridx[3] *= Hrtf->irSize;
- /* Calculate the normalized and attenuated target HRIR coefficients using
- * linear interpolation when there is enough gain to warrant it. Zero
- * the target coefficients if gain is too low. Then calculate the
- * coefficient stepping values using the target and previous running
- * coefficients.
- */
- if(gain > 0.0001f)
- {
- gain *= 1.0f/32767.0f;
- for(i = 0;i < HRIR_LENGTH;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
- coeffs[i][0] = (Hrtf->coeffs[lidx[0]+i]*blend[0] +
- Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] +
- Hrtf->coeffs[lidx[3]+i]*blend[3]) * gain;
- coeffs[i][1] = (Hrtf->coeffs[ridx[0]+i]*blend[0] +
- Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] +
- Hrtf->coeffs[ridx[3]+i]*blend[3]) * gain;
- coeffStep[i][0] = step * (coeffs[i][0] - left);
- coeffStep[i][1] = step * (coeffs[i][1] - right);
- }
- }
- else
- {
- for(i = 0;i < HRIR_LENGTH;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
- coeffs[i][0] = 0.0f;
- coeffs[i][1] = 0.0f;
- coeffStep[i][0] = step * -left;
- coeffStep[i][1] = step * -right;
- }
- }
- /* The stepping count is the number of samples necessary for the HRIR to
- * complete its transition. The mixer will only apply stepping for this
- * many samples.
- */
- return fastf2u(delta);
- }
- static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
- {
- const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
- struct Hrtf *Hrtf = NULL;
- ALboolean failed = AL_FALSE;
- ALuint rate = 0, irCount = 0;
- ALushort irSize = 0;
- ALubyte evCount = 0;
- ALubyte *azCount = NULL;
- ALushort *evOffset = NULL;
- ALshort *coeffs = NULL;
- ALubyte *delays = NULL;
- ALuint i, j;
- rate = fgetc(f);
- rate |= fgetc(f)<<8;
- rate |= fgetc(f)<<16;
- rate |= fgetc(f)<<24;
- irCount = fgetc(f);
- irCount |= fgetc(f)<<8;
- irSize = fgetc(f);
- irSize |= fgetc(f)<<8;
- evCount = fgetc(f);
- if(rate != deviceRate)
- {
- ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
- rate, deviceRate);
- failed = AL_TRUE;
- }
- if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
- {
- ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
- irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
- failed = AL_TRUE;
- }
- if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
- {
- ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
- evCount, MIN_EV_COUNT, MAX_EV_COUNT);
- failed = AL_TRUE;
- }
- if(failed)
- return NULL;
- azCount = malloc(sizeof(azCount[0])*evCount);
- evOffset = malloc(sizeof(evOffset[0])*evCount);
- if(azCount == NULL || evOffset == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- if(!failed)
- {
- evOffset[0] = fgetc(f);
- evOffset[0] |= fgetc(f)<<8;
- for(i = 1;i < evCount;i++)
- {
- evOffset[i] = fgetc(f);
- evOffset[i] |= fgetc(f)<<8;
- if(evOffset[i] <= evOffset[i-1])
- {
- ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
- i, evOffset[i], evOffset[i-1]);
- failed = AL_TRUE;
- }
- azCount[i-1] = evOffset[i] - evOffset[i-1];
- if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
- {
- ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
- i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
- failed = AL_TRUE;
- }
- }
- if(irCount <= evOffset[i-1])
- {
- ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
- i-1, evOffset[i-1], irCount);
- failed = AL_TRUE;
- }
- azCount[i-1] = irCount - evOffset[i-1];
- if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
- {
- ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
- i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
- delays = malloc(sizeof(delays[0])*irCount);
- if(coeffs == NULL || delays == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- for(i = 0;i < irCount*irSize;i+=irSize)
- {
- for(j = 0;j < irSize;j++)
- {
- ALshort coeff;
- coeff = fgetc(f);
- coeff |= fgetc(f)<<8;
- coeffs[i+j] = coeff;
- }
- }
- for(i = 0;i < irCount;i++)
- {
- delays[i] = fgetc(f);
- if(delays[i] > maxDelay)
- {
- ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
- failed = AL_TRUE;
- }
- }
- if(feof(f))
- {
- ERR("Premature end of data\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- Hrtf = malloc(sizeof(struct Hrtf));
- if(Hrtf == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- Hrtf->sampleRate = rate;
- Hrtf->irSize = irSize;
- Hrtf->evCount = evCount;
- Hrtf->azCount = azCount;
- Hrtf->evOffset = evOffset;
- Hrtf->coeffs = coeffs;
- Hrtf->delays = delays;
- Hrtf->next = NULL;
- return Hrtf;
- }
- free(azCount);
- free(evOffset);
- free(coeffs);
- free(delays);
- return NULL;
- }
- static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate)
- {
- const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
- struct Hrtf *Hrtf = NULL;
- ALboolean failed = AL_FALSE;
- ALuint rate = 0, irCount = 0;
- ALubyte irSize = 0, evCount = 0;
- ALubyte *azCount = NULL;
- ALushort *evOffset = NULL;
- ALshort *coeffs = NULL;
- ALubyte *delays = NULL;
- ALuint i, j;
- rate = fgetc(f);
- rate |= fgetc(f)<<8;
- rate |= fgetc(f)<<16;
- rate |= fgetc(f)<<24;
- irSize = fgetc(f);
- evCount = fgetc(f);
- if(rate != deviceRate)
- {
- ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
- rate, deviceRate);
- failed = AL_TRUE;
- }
- if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
- {
- ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
- irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
- failed = AL_TRUE;
- }
- if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
- {
- ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
- evCount, MIN_EV_COUNT, MAX_EV_COUNT);
- failed = AL_TRUE;
- }
- if(failed)
- return NULL;
- azCount = malloc(sizeof(azCount[0])*evCount);
- evOffset = malloc(sizeof(evOffset[0])*evCount);
- if(azCount == NULL || evOffset == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- if(!failed)
- {
- for(i = 0;i < evCount;i++)
- {
- azCount[i] = fgetc(f);
- if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
- {
- ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
- i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
- failed = AL_TRUE;
- }
- }
- }
- if(!failed)
- {
- evOffset[0] = 0;
- irCount = azCount[0];
- for(i = 1;i < evCount;i++)
- {
- evOffset[i] = evOffset[i-1] + azCount[i-1];
- irCount += azCount[i];
- }
- coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
- delays = malloc(sizeof(delays[0])*irCount);
- if(coeffs == NULL || delays == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- for(i = 0;i < irCount*irSize;i+=irSize)
- {
- for(j = 0;j < irSize;j++)
- {
- ALshort coeff;
- coeff = fgetc(f);
- coeff |= fgetc(f)<<8;
- coeffs[i+j] = coeff;
- }
- }
- for(i = 0;i < irCount;i++)
- {
- delays[i] = fgetc(f);
- if(delays[i] > maxDelay)
- {
- ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
- failed = AL_TRUE;
- }
- }
- if(feof(f))
- {
- ERR("Premature end of data\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- Hrtf = malloc(sizeof(struct Hrtf));
- if(Hrtf == NULL)
- {
- ERR("Out of memory.\n");
- failed = AL_TRUE;
- }
- }
- if(!failed)
- {
- Hrtf->sampleRate = rate;
- Hrtf->irSize = irSize;
- Hrtf->evCount = evCount;
- Hrtf->azCount = azCount;
- Hrtf->evOffset = evOffset;
- Hrtf->coeffs = coeffs;
- Hrtf->delays = delays;
- Hrtf->next = NULL;
- return Hrtf;
- }
- free(azCount);
- free(evOffset);
- free(coeffs);
- free(delays);
- return NULL;
- }
- static struct Hrtf *LoadHrtf(ALuint deviceRate)
- {
- const char *fnamelist = NULL;
- if(!ConfigValueStr(NULL, "hrtf_tables", &fnamelist))
- return NULL;
- while(*fnamelist != '\0')
- {
- struct Hrtf *Hrtf = NULL;
- char fname[PATH_MAX];
- ALchar magic[8];
- ALuint i;
- FILE *f;
- while(isspace(*fnamelist) || *fnamelist == ',')
- fnamelist++;
- i = 0;
- while(*fnamelist != '\0' && *fnamelist != ',')
- {
- const char *next = strpbrk(fnamelist, "%,");
- while(fnamelist != next && *fnamelist && i < sizeof(fname))
- fname[i++] = *(fnamelist++);
- if(!next || *next == ',')
- break;
- /* *next == '%' */
- next++;
- if(*next == 'r')
- {
- int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate);
- i += minu(wrote, sizeof(fname)-i);
- next++;
- }
- else if(*next == '%')
- {
- if(i < sizeof(fname))
- fname[i++] = '%';
- next++;
- }
- else
- ERR("Invalid marker '%%%c'\n", *next);
- fnamelist = next;
- }
- i = minu(i, sizeof(fname)-1);
- fname[i] = '\0';
- while(i > 0 && isspace(fname[i-1]))
- i--;
- fname[i] = '\0';
- if(fname[0] == '\0')
- continue;
- TRACE("Loading %s...\n", fname);
- f = fopen(fname, "rb");
- if(f == NULL)
- {
- ERR("Could not open %s\n", fname);
- continue;
- }
- if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
- ERR("Failed to read header from %s\n", fname);
- else
- {
- if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
- {
- TRACE("Detected data set format v0\n");
- Hrtf = LoadHrtf00(f, deviceRate);
- }
- else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
- {
- TRACE("Detected data set format v1\n");
- Hrtf = LoadHrtf01(f, deviceRate);
- }
- else
- ERR("Invalid header in %s: \"%.8s\"\n", fname, magic);
- }
- fclose(f);
- f = NULL;
- if(Hrtf)
- {
- Hrtf->next = LoadedHrtfs;
- LoadedHrtfs = Hrtf;
- TRACE("Loaded HRTF support for format: %s %uhz\n",
- DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate);
- return Hrtf;
- }
- ERR("Failed to load %s\n", fname);
- }
- return NULL;
- }
- const struct Hrtf *GetHrtf(ALCdevice *device)
- {
- if(device->FmtChans == DevFmtStereo)
- {
- struct Hrtf *Hrtf = LoadedHrtfs;
- while(Hrtf != NULL)
- {
- if(device->Frequency == Hrtf->sampleRate)
- return Hrtf;
- Hrtf = Hrtf->next;
- }
- Hrtf = LoadHrtf(device->Frequency);
- if(Hrtf != NULL)
- return Hrtf;
- if(device->Frequency == DefaultHrtf.sampleRate)
- return &DefaultHrtf;
- }
- ERR("Incompatible format: %s %uhz\n",
- DevFmtChannelsString(device->FmtChans), device->Frequency);
- return NULL;
- }
- void FindHrtfFormat(const ALCdevice *device, enum DevFmtChannels *chans, ALCuint *srate)
- {
- const struct Hrtf *hrtf = &DefaultHrtf;
- if(device->Frequency != DefaultHrtf.sampleRate)
- {
- hrtf = LoadedHrtfs;
- while(hrtf != NULL)
- {
- if(device->Frequency == hrtf->sampleRate)
- break;
- hrtf = hrtf->next;
- }
- if(hrtf == NULL)
- hrtf = LoadHrtf(device->Frequency);
- if(hrtf == NULL)
- hrtf = &DefaultHrtf;
- }
- *chans = DevFmtStereo;
- *srate = hrtf->sampleRate;
- }
- void FreeHrtfs(void)
- {
- struct Hrtf *Hrtf = NULL;
- while((Hrtf=LoadedHrtfs) != NULL)
- {
- LoadedHrtfs = Hrtf->next;
- free((void*)Hrtf->azCount);
- free((void*)Hrtf->evOffset);
- free((void*)Hrtf->coeffs);
- free((void*)Hrtf->delays);
- free(Hrtf);
- }
- }
- ALuint GetHrtfIrSize (const struct Hrtf *Hrtf)
- {
- return Hrtf->irSize;
- }
|