|
@@ -1,5 +1,5 @@
|
|
// SimplexNoise1234
|
|
// SimplexNoise1234
|
|
-// Copyright © 2003-2011, Stefan Gustavson
|
|
|
|
|
|
+// Copyright © 2003-2011, Stefan Gustavson
|
|
//
|
|
//
|
|
// Contact: [email protected]
|
|
// Contact: [email protected]
|
|
//
|
|
//
|
|
@@ -13,8 +13,7 @@
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
// General Public License for more details.
|
|
|
|
|
|
-// Modified by the LOVE Development Team to remove 3D and 4D implementations due
|
|
|
|
-// to patent issues.
|
|
|
|
|
|
+// Modified by the LOVE Development Team to use double precision.
|
|
|
|
|
|
/** \file
|
|
/** \file
|
|
\brief Implements the SimplexNoise1234 class for producing Perlin simplex noise.
|
|
\brief Implements the SimplexNoise1234 class for producing Perlin simplex noise.
|
|
@@ -117,6 +116,34 @@ double SimplexNoise1234::grad( int hash, double x, double y ) {
|
|
return ((h&1)? -u : u) + ((h&2)? -2.0*v : 2.0*v);
|
|
return ((h&1)? -u : u) + ((h&2)? -2.0*v : 2.0*v);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+double SimplexNoise1234::grad( int hash, double x, double y , double z ) {
|
|
|
|
+ int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
|
|
|
|
+ double u = h<8 ? x : y; // gradient directions, and compute dot product.
|
|
|
|
+ double v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
|
|
|
|
+ return ((h&1)? -u : u) + ((h&2)? -v : v);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+double SimplexNoise1234::grad( int hash, double x, double y, double z, double t ) {
|
|
|
|
+ int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
|
|
|
|
+ double u = h<24 ? x : y; // gradient directions, and compute dot product.
|
|
|
|
+ double v = h<16 ? y : z;
|
|
|
|
+ double w = h<8 ? z : t;
|
|
|
|
+ return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// A lookup table to traverse the simplex around a given point in 4D.
|
|
|
|
+// Details can be found where this table is used, in the 4D noise method.
|
|
|
|
+/* TODO: This should not be required, backport it from Bill's GLSL code! */
|
|
|
|
+static unsigned char simplex[64][4] = {
|
|
|
|
+ {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
|
|
|
|
+ {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
|
|
|
|
+ {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
|
|
|
|
+ {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
|
|
|
|
+ {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
|
|
|
|
+ {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
|
|
|
|
+ {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
|
|
|
|
+ {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
|
|
|
|
+
|
|
// 1D simplex noise
|
|
// 1D simplex noise
|
|
float SimplexNoise1234::noise(double x) {
|
|
float SimplexNoise1234::noise(double x) {
|
|
|
|
|
|
@@ -206,3 +233,238 @@ float SimplexNoise1234::noise(double x, double y) {
|
|
// The result is scaled to return values in the interval [-1,1].
|
|
// The result is scaled to return values in the interval [-1,1].
|
|
return 45.23f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
|
|
return 45.23f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+// 3D simplex noise
|
|
|
|
+float SimplexNoise1234::noise(double x, double y, double z) {
|
|
|
|
+
|
|
|
|
+ // Simple skewing factors for the 3D case
|
|
|
|
+#define F3 0.333333333
|
|
|
|
+#define G3 0.166666667
|
|
|
|
+
|
|
|
|
+ double n0, n1, n2, n3; // Noise contributions from the four corners
|
|
|
|
+
|
|
|
|
+ // Skew the input space to determine which simplex cell we're in
|
|
|
|
+ double s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
|
|
|
|
+ double xs = x+s;
|
|
|
|
+ double ys = y+s;
|
|
|
|
+ double zs = z+s;
|
|
|
|
+ int i = FASTFLOOR(xs);
|
|
|
|
+ int j = FASTFLOOR(ys);
|
|
|
|
+ int k = FASTFLOOR(zs);
|
|
|
|
+
|
|
|
|
+ double t = (float)(i+j+k)*G3;
|
|
|
|
+ double X0 = i-t; // Unskew the cell origin back to (x,y,z) space
|
|
|
|
+ double Y0 = j-t;
|
|
|
|
+ double Z0 = k-t;
|
|
|
|
+ double x0 = x-X0; // The x,y,z distances from the cell origin
|
|
|
|
+ double y0 = y-Y0;
|
|
|
|
+ double z0 = z-Z0;
|
|
|
|
+
|
|
|
|
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
|
|
+ // Determine which simplex we are in.
|
|
|
|
+ int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
|
|
|
+ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
|
|
|
+
|
|
|
|
+ /* This code would benefit from a backport from the GLSL version! */
|
|
|
|
+ if(x0>=y0) {
|
|
|
|
+ if(y0>=z0)
|
|
|
|
+ { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
|
|
|
|
+ else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
|
|
|
|
+ else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
|
|
|
|
+ }
|
|
|
|
+ else { // x0<y0
|
|
|
|
+ if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
|
|
|
|
+ else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
|
|
|
|
+ else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
|
|
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
|
|
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
|
|
|
+ // c = 1/6.
|
|
|
|
+
|
|
|
|
+ double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
|
|
|
+ double y1 = y0 - j1 + G3;
|
|
|
|
+ double z1 = z0 - k1 + G3;
|
|
|
|
+ double x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
|
|
|
|
+ double y2 = y0 - j2 + 2.0f*G3;
|
|
|
|
+ double z2 = z0 - k2 + 2.0f*G3;
|
|
|
|
+ double x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
|
|
|
|
+ double y3 = y0 - 1.0f + 3.0f*G3;
|
|
|
|
+ double z3 = z0 - 1.0f + 3.0f*G3;
|
|
|
|
+
|
|
|
|
+ // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
|
|
|
|
+ int ii = i & 0xff;
|
|
|
|
+ int jj = j & 0xff;
|
|
|
|
+ int kk = k & 0xff;
|
|
|
|
+
|
|
|
|
+ // Calculate the contribution from the four corners
|
|
|
|
+ double t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
|
|
|
|
+ if(t0 < 0.0f) n0 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t0 *= t0;
|
|
|
|
+ n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
|
|
|
|
+ if(t1 < 0.0f) n1 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t1 *= t1;
|
|
|
|
+ n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
|
|
|
|
+ if(t2 < 0.0f) n2 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t2 *= t2;
|
|
|
|
+ n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
|
|
|
|
+ if(t3<0.0f) n3 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t3 *= t3;
|
|
|
|
+ n3 = t3 * t3 * grad(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Add contributions from each corner to get the final noise value.
|
|
|
|
+ // The result is scaled to stay just inside [-1,1]
|
|
|
|
+ return 32.74f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// 4D simplex noise
|
|
|
|
+float SimplexNoise1234::noise(double x, double y, double z, double w) {
|
|
|
|
+
|
|
|
|
+ // The skewing and unskewing factors are hairy again for the 4D case
|
|
|
|
+#define F4 0.309016994 // F4 = (Math.sqrt(5.0)-1.0)/4.0
|
|
|
|
+#define G4 0.138196601 // G4 = (5.0-Math.sqrt(5.0))/20.0
|
|
|
|
+
|
|
|
|
+ double n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
|
|
|
+
|
|
|
|
+ // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
|
|
|
+ double s = (x + y + z + w) * F4; // Factor for 4D skewing
|
|
|
|
+ double xs = x + s;
|
|
|
|
+ double ys = y + s;
|
|
|
|
+ double zs = z + s;
|
|
|
|
+ double ws = w + s;
|
|
|
|
+ int i = FASTFLOOR(xs);
|
|
|
|
+ int j = FASTFLOOR(ys);
|
|
|
|
+ int k = FASTFLOOR(zs);
|
|
|
|
+ int l = FASTFLOOR(ws);
|
|
|
|
+
|
|
|
|
+ double t = (i + j + k + l) * G4; // Factor for 4D unskewing
|
|
|
|
+ double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
|
|
|
|
+ double Y0 = j - t;
|
|
|
|
+ double Z0 = k - t;
|
|
|
|
+ double W0 = l - t;
|
|
|
|
+
|
|
|
|
+ double x0 = x - X0; // The x,y,z,w distances from the cell origin
|
|
|
|
+ double y0 = y - Y0;
|
|
|
|
+ double z0 = z - Z0;
|
|
|
|
+ double w0 = w - W0;
|
|
|
|
+
|
|
|
|
+ // For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
|
|
|
+ // To find out which of the 24 possible simplices we're in, we need to
|
|
|
|
+ // determine the magnitude ordering of x0, y0, z0 and w0.
|
|
|
|
+ // The method below is a good way of finding the ordering of x,y,z,w and
|
|
|
|
+ // then find the correct traversal order for the simplex weÂ’re in.
|
|
|
|
+ // First, six pair-wise comparisons are performed between each possible pair
|
|
|
|
+ // of the four coordinates, and the results are used to add up binary bits
|
|
|
|
+ // for an integer index.
|
|
|
|
+ int c1 = (x0 > y0) ? 32 : 0;
|
|
|
|
+ int c2 = (x0 > z0) ? 16 : 0;
|
|
|
|
+ int c3 = (y0 > z0) ? 8 : 0;
|
|
|
|
+ int c4 = (x0 > w0) ? 4 : 0;
|
|
|
|
+ int c5 = (y0 > w0) ? 2 : 0;
|
|
|
|
+ int c6 = (z0 > w0) ? 1 : 0;
|
|
|
|
+ int c = c1 + c2 + c3 + c4 + c5 + c6;
|
|
|
|
+
|
|
|
|
+ int i1, j1, k1, l1; // The integer offsets for the second simplex corner
|
|
|
|
+ int i2, j2, k2, l2; // The integer offsets for the third simplex corner
|
|
|
|
+ int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
|
|
|
|
+
|
|
|
|
+ // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
|
|
|
|
+ // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
|
|
|
|
+ // impossible. Only the 24 indices which have non-zero entries make any sense.
|
|
|
|
+ // We use a thresholding to set the coordinates in turn from the largest magnitude.
|
|
|
|
+ // The number 3 in the "simplex" array is at the position of the largest coordinate.
|
|
|
|
+ i1 = simplex[c][0]>=3 ? 1 : 0;
|
|
|
|
+ j1 = simplex[c][1]>=3 ? 1 : 0;
|
|
|
|
+ k1 = simplex[c][2]>=3 ? 1 : 0;
|
|
|
|
+ l1 = simplex[c][3]>=3 ? 1 : 0;
|
|
|
|
+ // The number 2 in the "simplex" array is at the second largest coordinate.
|
|
|
|
+ i2 = simplex[c][0]>=2 ? 1 : 0;
|
|
|
|
+ j2 = simplex[c][1]>=2 ? 1 : 0;
|
|
|
|
+ k2 = simplex[c][2]>=2 ? 1 : 0;
|
|
|
|
+ l2 = simplex[c][3]>=2 ? 1 : 0;
|
|
|
|
+ // The number 1 in the "simplex" array is at the second smallest coordinate.
|
|
|
|
+ i3 = simplex[c][0]>=1 ? 1 : 0;
|
|
|
|
+ j3 = simplex[c][1]>=1 ? 1 : 0;
|
|
|
|
+ k3 = simplex[c][2]>=1 ? 1 : 0;
|
|
|
|
+ l3 = simplex[c][3]>=1 ? 1 : 0;
|
|
|
|
+ // The fifth corner has all coordinate offsets = 1, so no need to look that up.
|
|
|
|
+
|
|
|
|
+ double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
|
|
|
+ double y1 = y0 - j1 + G4;
|
|
|
|
+ double z1 = z0 - k1 + G4;
|
|
|
|
+ double w1 = w0 - l1 + G4;
|
|
|
|
+ double x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords
|
|
|
|
+ double y2 = y0 - j2 + 2.0f*G4;
|
|
|
|
+ double z2 = z0 - k2 + 2.0f*G4;
|
|
|
|
+ double w2 = w0 - l2 + 2.0f*G4;
|
|
|
|
+ double x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords
|
|
|
|
+ double y3 = y0 - j3 + 3.0f*G4;
|
|
|
|
+ double z3 = z0 - k3 + 3.0f*G4;
|
|
|
|
+ double w3 = w0 - l3 + 3.0f*G4;
|
|
|
|
+ double x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords
|
|
|
|
+ double y4 = y0 - 1.0f + 4.0f*G4;
|
|
|
|
+ double z4 = z0 - 1.0f + 4.0f*G4;
|
|
|
|
+ double w4 = w0 - 1.0f + 4.0f*G4;
|
|
|
|
+
|
|
|
|
+ // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
|
|
|
|
+ int ii = i & 0xff;
|
|
|
|
+ int jj = j & 0xff;
|
|
|
|
+ int kk = k & 0xff;
|
|
|
|
+ int ll = l & 0xff;
|
|
|
|
+
|
|
|
|
+ // Calculate the contribution from the five corners
|
|
|
|
+ double t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
|
|
|
|
+ if(t0 < 0.0f) n0 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t0 *= t0;
|
|
|
|
+ n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
|
|
|
|
+ if(t1 < 0.0f) n1 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t1 *= t1;
|
|
|
|
+ n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
|
|
|
|
+ if(t2 < 0.0f) n2 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t2 *= t2;
|
|
|
|
+ n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
|
|
|
|
+ if(t3 < 0.0f) n3 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t3 *= t3;
|
|
|
|
+ n3 = t3 * t3 * grad(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
|
|
|
|
+ if(t4 < 0.0f) n4 = 0.0f;
|
|
|
|
+ else {
|
|
|
|
+ t4 *= t4;
|
|
|
|
+ n4 = t4 * t4 * grad(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Sum up and scale the result to cover the range [-1,1]
|
|
|
|
+ return 27.3f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
|
|
|
|
+}
|
|
|
|
+//---------------------------------------------------------------------
|