#include "Graphics.h" #include "Buffer.h" #include "SDL_vulkan.h" #include "window/Window.h" #include "common/Exception.h" #include "Shader.h" #include "graphics/Texture.h" #include "Vulkan.h" #include "common/version.h" #include "common/pixelformat.h" #include #include #include #include #include #include #include namespace love { namespace graphics { namespace vulkan { static VkIndexType getVulkanIndexBufferType(IndexDataType type) { switch (type) { case INDEX_UINT16: return VK_INDEX_TYPE_UINT16; case INDEX_UINT32: return VK_INDEX_TYPE_UINT32; default: throw love::Exception("unknown Index Data type"); } } const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; const std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME, // https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_push_descriptor.html VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME }; #ifdef NDEBUG constexpr bool enableValidationLayers = false; #else constexpr bool enableValidationLayers = true; #endif constexpr int MAX_FRAMES_IN_FLIGHT = 2; constexpr uint32_t vulkanApiVersion = VK_API_VERSION_1_3; const char* Graphics::getName() const { return "love.graphics.vulkan"; } const VkDevice Graphics::getDevice() const { return device; } const VkPhysicalDevice Graphics::getPhysicalDevice() const { return physicalDevice; } const VmaAllocator Graphics::getVmaAllocator() const { return vmaAllocator; } Graphics::~Graphics() { // We already cleaned those up by clearing out batchedDrawBuffers. // We set them to nullptr here so the base class doesn't crash // when it tries to free this. batchedDrawState.vb[0] = nullptr; batchedDrawState.vb[1] = nullptr; batchedDrawState.indexBuffer = nullptr; } // START OVERRIDEN FUNCTIONS love::graphics::Texture* Graphics::newTexture(const love::graphics::Texture::Settings& settings, const love::graphics::Texture::Slices* data) { return new Texture(this, settings, data); } love::graphics::Buffer* Graphics::newBuffer(const love::graphics::Buffer::Settings& settings, const std::vector& format, const void* data, size_t size, size_t arraylength) { return new Buffer(this, settings, format, data, size, arraylength); } // FIXME: clear stencil and depth missing. void Graphics::clear(OptionalColorD color, OptionalInt stencil, OptionalDouble depth) { VkClearAttachment attachment{}; if (color.hasValue) { attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attachment.clearValue.color.float32[0] = static_cast(color.value.r); attachment.clearValue.color.float32[1] = static_cast(color.value.g); attachment.clearValue.color.float32[2] = static_cast(color.value.b); attachment.clearValue.color.float32[3] = static_cast(color.value.a); } VkClearRect rect{}; rect.layerCount = 1; rect.rect.extent.width = static_cast(currentViewportWidth); rect.rect.extent.height = static_cast(currentViewportHeight); vkCmdClearAttachments(commandBuffers[imageIndex], 1, &attachment, 1, &rect); } void Graphics::clear(const std::vector& colors, OptionalInt stencil, OptionalDouble depth) { std::vector attachments; for (const auto& color : colors) { VkClearAttachment attachment{}; if (color.hasValue) { attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attachment.clearValue.color.float32[0] = static_cast(color.value.r); attachment.clearValue.color.float32[1] = static_cast(color.value.g); attachment.clearValue.color.float32[2] = static_cast(color.value.b); attachment.clearValue.color.float32[3] = static_cast(color.value.a); } attachments.push_back(attachment); } VkClearRect rect{}; rect.layerCount = 1; rect.rect.extent.width = static_cast(currentViewportWidth); rect.rect.extent.height = static_cast(currentViewportHeight); vkCmdClearAttachments(commandBuffers[imageIndex], static_cast(attachments.size()), attachments.data(), 1, &rect); } void Graphics::present(void* screenshotCallbackdata) { if (!isActive()) { return; } flushBatchedDraws(); endRecordingGraphicsCommands(); if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) { vkWaitForFences(device, 1, &imagesInFlight.at(imageIndex), VK_TRUE, UINT64_MAX); } imagesInFlight[imageIndex] = inFlightFences[currentFrame]; // all data transfers should happen before any draw calls. std::vector submitCommandbuffers = { dataTransferCommandBuffers.at(currentFrame), commandBuffers.at(imageIndex) }; VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = { imageAvailableSemaphores.at(currentFrame) }; VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = static_cast(submitCommandbuffers.size()); submitInfo.pCommandBuffers = submitCommandbuffers.data(); VkSemaphore signalSemaphores[] = { renderFinishedSemaphores.at(currentFrame) }; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; vkResetFences(device, 1, &inFlightFences[currentFrame]); if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences.at(currentFrame)) != VK_SUCCESS) { throw love::Exception("failed to submit draw command buffer"); } VkPresentInfoKHR presentInfo{}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; VkSwapchainKHR swapChains[] = { swapChain }; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapChains; presentInfo.pImageIndices = &imageIndex; VkResult result = vkQueuePresentKHR(presentQueue, &presentInfo); if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized) { framebufferResized = false; recreateSwapChain(); } else if (result != VK_SUCCESS) { throw love::Exception("failed to present swap chain image"); } currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; updatedBatchedDrawBuffers(); startRecordingGraphicsCommands(); } void Graphics::setViewportSize(int width, int height, int pixelwidth, int pixelheight) { this->width = width; this->height = height; this->pixelWidth = pixelwidth; this->pixelHeight = pixelheight; resetProjection(); } bool Graphics::setMode(void* context, int width, int height, int pixelwidth, int pixelheight, bool windowhasstencil, int msaa) { cleanUpFunctions.clear(); cleanUpFunctions.resize(MAX_FRAMES_IN_FLIGHT); createVulkanInstance(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); initVMA(); initCapabilities(); createSwapChain(); createImageViews(); createSyncObjects(); createCommandPool(); createCommandBuffers(); startRecordingGraphicsCommands(); createQuadIndexBuffer(); createDefaultTexture(); createDefaultShaders(); currentFrame = 0; created = true; float whiteColor[] = { 1.0f, 1.0f, 1.0f, 1.0f }; batchedDrawBuffers.clear(); batchedDrawBuffers.reserve(MAX_FRAMES_IN_FLIGHT); for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { batchedDrawBuffers.emplace_back(); // Initial sizes that should be good enough for most cases. It will // resize to fit if needed, later. batchedDrawBuffers[i].vertexBuffer1 = new StreamBuffer(this, BUFFERUSAGE_VERTEX, 1024 * 1024 * 1); batchedDrawBuffers[i].vertexBuffer2 = new StreamBuffer(this, BUFFERUSAGE_VERTEX, 256 * 1024 * 1); batchedDrawBuffers[i].indexBuffer = new StreamBuffer(this, BUFFERUSAGE_INDEX, sizeof(uint16) * LOVE_UINT16_MAX); // sometimes the VertexColor is not set, so we manually adjust it to white color batchedDrawBuffers[i].constantColorBuffer = new StreamBuffer(this, BUFFERUSAGE_VERTEX, sizeof(whiteColor)); auto mapInfo = batchedDrawBuffers[i].constantColorBuffer->map(sizeof(whiteColor)); memcpy(mapInfo.data, whiteColor, sizeof(whiteColor)); batchedDrawBuffers[i].constantColorBuffer->unmap(sizeof(whiteColor)); batchedDrawBuffers[i].constantColorBuffer->markUsed(sizeof(whiteColor)); } updatedBatchedDrawBuffers(); Shader::current = Shader::standardShaders[graphics::Shader::StandardShader::STANDARD_DEFAULT]; restoreState(states.back()); setViewportSize(width, height, pixelwidth, pixelheight); renderTargetTexture = nullptr; currentViewportWidth = 0.0f; currentViewportHeight = 0.0f; Vulkan::resetShaderSwitches(); return true; } void Graphics::initCapabilities() { // todo capabilities.features[FEATURE_MULTI_RENDER_TARGET_FORMATS] = false; capabilities.features[FEATURE_CLAMP_ZERO] = false; capabilities.features[FEATURE_CLAMP_ONE] = false; capabilities.features[FEATURE_BLEND_MINMAX] = false; capabilities.features[FEATURE_LIGHTEN] = false; capabilities.features[FEATURE_FULL_NPOT] = false; capabilities.features[FEATURE_PIXEL_SHADER_HIGHP] = true; capabilities.features[FEATURE_SHADER_DERIVATIVES] = false; capabilities.features[FEATURE_GLSL3] = true; capabilities.features[FEATURE_GLSL4] = true; capabilities.features[FEATURE_INSTANCING] = false; capabilities.features[FEATURE_TEXEL_BUFFER] = false; capabilities.features[FEATURE_INDEX_BUFFER_32BIT] = true; capabilities.features[FEATURE_COPY_BUFFER] = false; capabilities.features[FEATURE_COPY_BUFFER_TO_TEXTURE] = false; capabilities.features[FEATURE_COPY_TEXTURE_TO_BUFFER] = false; capabilities.features[FEATURE_COPY_RENDER_TARGET_TO_BUFFER] = false; static_assert(FEATURE_MAX_ENUM == 17, "Graphics::initCapabilities must be updated when adding a new graphics feature!"); VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(physicalDevice, &properties); capabilities.limits[LIMIT_POINT_SIZE] = properties.limits.pointSizeRange[1]; capabilities.limits[LIMIT_TEXTURE_SIZE] = properties.limits.maxImageDimension2D; capabilities.limits[LIMIT_TEXTURE_LAYERS] = properties.limits.maxImageArrayLayers; capabilities.limits[LIMIT_VOLUME_TEXTURE_SIZE] = properties.limits.maxImageDimension3D; capabilities.limits[LIMIT_CUBE_TEXTURE_SIZE] = properties.limits.maxImageDimensionCube; capabilities.limits[LIMIT_TEXEL_BUFFER_SIZE] = properties.limits.maxTexelBufferElements; // ? capabilities.limits[LIMIT_SHADER_STORAGE_BUFFER_SIZE] = properties.limits.maxStorageBufferRange; // ? capabilities.limits[LIMIT_THREADGROUPS_X] = 0; // todo capabilities.limits[LIMIT_THREADGROUPS_Y] = 0; // todo capabilities.limits[LIMIT_THREADGROUPS_Z] = 0; // todo capabilities.limits[LIMIT_RENDER_TARGETS] = 1; // todo capabilities.limits[LIMIT_TEXTURE_MSAA] = 1; // todo capabilities.limits[LIMIT_ANISOTROPY] = 1.0f; // todo static_assert(LIMIT_MAX_ENUM == 13, "Graphics::initCapabilities must be updated when adding a new system limit!"); capabilities.textureTypes[TEXTURE_2D] = true; capabilities.textureTypes[TEXTURE_2D_ARRAY] = true; capabilities.textureTypes[TEXTURE_VOLUME] = false; capabilities.textureTypes[TEXTURE_CUBE] = false; } void Graphics::getAPIStats(int& shaderswitches) const { shaderswitches = Vulkan::getNumShaderSwitches(); } void Graphics::unSetMode() { created = false; vkDeviceWaitIdle(device); Volatile::unloadAll(); cleanup(); } void Graphics::setActive(bool enable) { flushBatchedDraws(); active = enable; } void Graphics::setFrontFaceWinding(Winding winding) { const auto& currentState = states.back(); if (currentState.winding == winding) { return; } flushBatchedDraws(); states.back().winding = winding; } void Graphics::setColorMask(ColorChannelMask mask) { flushBatchedDraws(); states.back().colorMask = mask; } void Graphics::setBlendState(const BlendState& blend) { flushBatchedDraws(); states.back().blend = blend; } void Graphics::setPointSize(float size) { if (size != states.back().pointSize) flushBatchedDraws(); states.back().pointSize = size; } bool Graphics::usesGLSLES() const { return false; } Graphics::RendererInfo Graphics::getRendererInfo() const { VkPhysicalDeviceProperties deviceProperties; vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties); Graphics::RendererInfo info; info.device = deviceProperties.deviceName; info.vendor = Vulkan::getVendorName(deviceProperties.vendorID); info.version = Vulkan::getVulkanApiVersion(deviceProperties.apiVersion); info.name = "Vulkan"; return info; } void Graphics::draw(const DrawCommand& cmd) { prepareDraw(*cmd.attributes, *cmd.buffers, cmd.texture, cmd.primitiveType, cmd.cullMode); vkCmdDraw(commandBuffers.at(imageIndex), static_cast(cmd.vertexCount), static_cast(cmd.instanceCount), static_cast(cmd.vertexStart), 0); } void Graphics::draw(const DrawIndexedCommand& cmd) { prepareDraw(*cmd.attributes, *cmd.buffers, cmd.texture, cmd.primitiveType, cmd.cullMode); vkCmdBindIndexBuffer(commandBuffers.at(imageIndex), (VkBuffer)cmd.indexBuffer->getHandle(), static_cast(cmd.indexBufferOffset), getVulkanIndexBufferType(cmd.indexType)); vkCmdDrawIndexed(commandBuffers.at(imageIndex), static_cast(cmd.indexCount), static_cast(cmd.instanceCount), 0, 0, 0); } void Graphics::drawQuads(int start, int count, const VertexAttributes& attributes, const BufferBindings& buffers, graphics::Texture* texture) { const int MAX_VERTICES_PER_DRAW = LOVE_UINT16_MAX; const int MAX_QUADS_PER_DRAW = MAX_VERTICES_PER_DRAW / 4; prepareDraw(attributes, buffers, texture, PRIMITIVE_TRIANGLES, CULL_BACK); vkCmdBindIndexBuffer(commandBuffers.at(imageIndex), (VkBuffer)quadIndexBuffer->getHandle(), 0, getVulkanIndexBufferType(INDEX_UINT16)); int baseVertex = start * 4; for (int quadindex = 0; quadindex < count; quadindex += MAX_QUADS_PER_DRAW) { int quadcount = std::min(MAX_QUADS_PER_DRAW, count - quadindex); vkCmdDrawIndexed(commandBuffers.at(imageIndex), static_cast(quadcount * 6), 1, 0, baseVertex, 0); baseVertex += quadcount * 4; } } void Graphics::setColor(Colorf c) { c.r = std::min(std::max(c.r, 0.0f), 1.0f); c.g = std::min(std::max(c.g, 0.0f), 1.0f); c.b = std::min(std::max(c.b, 0.0f), 1.0f); c.a = std::min(std::max(c.a, 0.0f), 1.0f); states.back().color = c; } void Graphics::setScissor(const Rect& rect) { flushBatchedDraws(); states.back().scissor = true; states.back().scissorRect = rect; } void Graphics::setScissor() { flushBatchedDraws(); states.back().scissor = false; } void Graphics::setWireframe(bool enable) { flushBatchedDraws(); states.back().wireframe = enable; } PixelFormat Graphics::getSizedFormat(PixelFormat format, bool rendertarget, bool readable) const { switch (format) { case PIXELFORMAT_NORMAL: if (isGammaCorrect()) { return PIXELFORMAT_RGBA8_UNORM_sRGB; } else { return PIXELFORMAT_RGBA8_UNORM; } case PIXELFORMAT_HDR: return PIXELFORMAT_RGBA16_FLOAT; default: return format; } } bool Graphics::isPixelFormatSupported(PixelFormat format, uint32 usage, bool sRGB) { return true; } Renderer Graphics::getRenderer() const { return RENDERER_VULKAN; } graphics::StreamBuffer* Graphics::newStreamBuffer(BufferUsage type, size_t size) { return new StreamBuffer(this, type, size); } Matrix4 Graphics::computeDeviceProjection(const Matrix4& projection, bool rendertotexture) const { uint32 flags = DEVICE_PROJECTION_DEFAULT; return calculateDeviceProjection(projection, flags); } void Graphics::setRenderTargetsInternal(const RenderTargets& rts, int pixelw, int pixelh, bool hasSRGBtexture) { endRenderPass(); if (rts.colors.size() == 0) { startRenderPass(nullptr, swapChainExtent.width, swapChainExtent.height); } else { // fixme: multi canvas render. auto& firstRenderTarget = rts.getFirstTarget(); startRenderPass(static_cast(firstRenderTarget.texture), pixelw, pixelh); } } // END IMPLEMENTATION OVERRIDDEN FUNCTIONS void Graphics::startRecordingGraphicsCommands() { vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX); while (true) { VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR) { recreateSwapChain(); continue; } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) { throw love::Exception("failed to acquire swap chain image"); } break; } for (auto& cleanUpFn : cleanUpFunctions.at(currentFrame)) { cleanUpFn(); } cleanUpFunctions.at(currentFrame).clear(); VkCommandBufferBeginInfo beginInfo{}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = 0; beginInfo.pInheritanceInfo = nullptr; if (vkBeginCommandBuffer(commandBuffers.at(imageIndex), &beginInfo) != VK_SUCCESS) { throw love::Exception("failed to begin recording command buffer"); } if (vkBeginCommandBuffer(dataTransferCommandBuffers.at(currentFrame), &beginInfo) != VK_SUCCESS) { throw love::Exception("failed to begin recording data transfer command buffer"); } Vulkan::cmdTransitionImageLayout(commandBuffers.at(imageIndex), swapChainImages[imageIndex], VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); startRenderPass(nullptr, swapChainExtent.width, swapChainExtent.height); Vulkan::resetShaderSwitches(); } void Graphics::endRecordingGraphicsCommands() { endRenderPass(); Vulkan::cmdTransitionImageLayout(commandBuffers.at(imageIndex), swapChainImages[imageIndex], VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR); if (vkEndCommandBuffer(commandBuffers.at(imageIndex)) != VK_SUCCESS) { throw love::Exception("failed to record command buffer"); } if (vkEndCommandBuffer(dataTransferCommandBuffers.at(currentFrame)) != VK_SUCCESS) { throw love::Exception("failed to record data transfer command buffer"); } } void Graphics::updatedBatchedDrawBuffers() { batchedDrawState.vb[0] = batchedDrawBuffers[currentFrame].vertexBuffer1; batchedDrawState.vb[0]->nextFrame(); batchedDrawState.vb[1] = batchedDrawBuffers[currentFrame].vertexBuffer2; batchedDrawState.vb[1]->nextFrame(); batchedDrawState.indexBuffer = batchedDrawBuffers[currentFrame].indexBuffer; batchedDrawState.indexBuffer->nextFrame(); } uint32_t Graphics::getNumImagesInFlight() const { return MAX_FRAMES_IN_FLIGHT; } const VkDeviceSize Graphics::getMinUniformBufferOffsetAlignment() const { return minUniformBufferOffsetAlignment; } graphics::Texture* Graphics::getDefaultTexture() const { return dynamic_cast(standardTexture.get()); } const PFN_vkCmdPushDescriptorSetKHR Graphics::getVkCmdPushDescriptorSetKHRFunctionPointer() const { return vkCmdPushDescriptorSet; } VkCommandBuffer Graphics::getDataTransferCommandBuffer() { return dataTransferCommandBuffers.at(currentFrame); } void Graphics::queueCleanUp(std::function cleanUp) { cleanUpFunctions.at(currentFrame).push_back(std::move(cleanUp)); } VkCommandBuffer Graphics::beginSingleTimeCommands() { VkCommandBufferAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandPool = commandPool; allocInfo.commandBufferCount = 1; VkCommandBuffer commandBuffer; vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer); VkCommandBufferBeginInfo beginInfo{}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; vkBeginCommandBuffer(commandBuffer, &beginInfo); return commandBuffer; } void Graphics::endSingleTimeCommands(VkCommandBuffer commandBuffer) { vkEndCommandBuffer(commandBuffer); VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); vkQueueWaitIdle(graphicsQueue); vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); } graphics::Shader::BuiltinUniformData Graphics::getCurrentBuiltinUniformData() { love::graphics::Shader::BuiltinUniformData data; data.transformMatrix = getTransform(); data.projectionMatrix = getDeviceProjection(); // The normal matrix is the transpose of the inverse of the rotation portion // (top-left 3x3) of the transform matrix. { Matrix3 normalmatrix = Matrix3(data.transformMatrix).transposedInverse(); const float* e = normalmatrix.getElements(); for (int i = 0; i < 3; i++) { data.normalMatrix[i].x = e[i * 3 + 0]; data.normalMatrix[i].y = e[i * 3 + 1]; data.normalMatrix[i].z = e[i * 3 + 2]; data.normalMatrix[i].w = 0.0f; } } // Store DPI scale in an unused component of another vector. data.normalMatrix[0].w = (float)getCurrentDPIScale(); // Same with point size. data.normalMatrix[1].w = getPointSize(); data.screenSizeParams.x = static_cast(swapChainExtent.width); data.screenSizeParams.y = static_cast(swapChainExtent.height); data.screenSizeParams.z = 1.0f; data.screenSizeParams.w = 0.0f; data.constantColor = getColor(); gammaCorrectColor(data.constantColor); return data; } void Graphics::createVulkanInstance() { if (enableValidationLayers && !checkValidationSupport()) { throw love::Exception("validation layers requested, but not available"); } VkApplicationInfo appInfo{}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "LOVE"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); //todo, get this version from somewhere else? appInfo.pEngineName = "LOVE Engine"; appInfo.engineVersion = VK_MAKE_VERSION(VERSION_MAJOR, VERSION_MINOR, VERSION_REV); appInfo.apiVersion = vulkanApiVersion; VkInstanceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; createInfo.pNext = nullptr; auto window = Module::getInstance(M_WINDOW); const void* handle = window->getHandle(); unsigned int count; if (SDL_Vulkan_GetInstanceExtensions((SDL_Window*)handle, &count, nullptr) != SDL_TRUE) { throw love::Exception("couldn't retrieve sdl vulkan extensions"); } std::vector extensions = {}; // can add more here size_t addition_extension_count = extensions.size(); extensions.resize(addition_extension_count + count); if (SDL_Vulkan_GetInstanceExtensions((SDL_Window*)handle, &count, extensions.data() + addition_extension_count) != SDL_TRUE) { throw love::Exception("couldn't retrieve sdl vulkan extensions"); } createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; createInfo.ppEnabledLayerNames = nullptr; } if (vkCreateInstance( &createInfo, nullptr, &instance) != VK_SUCCESS) { throw love::Exception("couldn't create vulkan instance"); } } bool Graphics::checkValidationSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) { bool layerFound = false; for (const auto& layerProperties : availableLayers) { if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } } if (!layerFound) { return false; } } return true; } void Graphics::pickPhysicalDevice() { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw love::Exception("failed to find GPUs with Vulkan support"); } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); std::multimap candidates; for (const auto& device : devices) { int score = rateDeviceSuitability(device); candidates.insert(std::make_pair(score, device)); } if (candidates.rbegin()->first > 0) { physicalDevice = candidates.rbegin()->second; } else { throw love::Exception("failed to find a suitable gpu"); } VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(physicalDevice, &properties); minUniformBufferOffsetAlignment = properties.limits.minUniformBufferOffsetAlignment; } bool Graphics::checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto& extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } // if the score is nonzero then the device is suitable. // A higher rating means generally better performance // if the score is 0 the device is unsuitable int Graphics::rateDeviceSuitability(VkPhysicalDevice device) { VkPhysicalDeviceProperties deviceProperties; VkPhysicalDeviceFeatures deviceFeatures; vkGetPhysicalDeviceProperties(device, &deviceProperties); vkGetPhysicalDeviceFeatures(device, &deviceFeatures); int score = 1; // optional if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) { score += 1000; } if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) { score += 100; } if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU) { score += 10; } // definitely needed QueueFamilyIndices indices = findQueueFamilies(device); if (!indices.isComplete()) { score = 0; } bool extensionsSupported = checkDeviceExtensionSupport(device); if (!extensionsSupported) { score = 0; } if (extensionsSupported) { auto swapChainSupport = querySwapChainSupport(device); bool swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); if (!swapChainAdequate) { score = 0; } } if (!deviceFeatures.samplerAnisotropy) { score = 0; } if (!deviceFeatures.fillModeNonSolid) { score = 0; } return score; } QueueFamilyIndices Graphics::findQueueFamilies(VkPhysicalDevice device) { QueueFamilyIndices indices; uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto& queueFamily : queueFamilies) { if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (presentSupport) { indices.presentFamily = i; } if (indices.isComplete()) { break; } i++; } return indices; } void Graphics::createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = { indices.graphicsFamily.value(), indices.presentFamily.value() }; float queuePriority = 1.0f; for (uint32_t queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo{}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceDynamicRenderingFeatures dynamicRenderingFeature{}; dynamicRenderingFeature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES; dynamicRenderingFeature.dynamicRendering = VK_TRUE; VkPhysicalDeviceFeatures deviceFeatures{}; deviceFeatures.samplerAnisotropy = VK_TRUE; deviceFeatures.fillModeNonSolid = VK_TRUE; VkDeviceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.pNext = &dynamicRenderingFeature; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); // can this be removed? if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) { throw love::Exception("failed to create logical device"); } vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue); vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue); vkCmdPushDescriptorSet = (PFN_vkCmdPushDescriptorSetKHR) vkGetDeviceProcAddr(device, "vkCmdPushDescriptorSetKHR"); if (!vkCmdPushDescriptorSet) { // fixme: how widely adopted is this extension? throw love::Exception("could not get a valid function pointer for vkCmdPushDescriptorSetKHR"); } } void Graphics::initVMA() { VmaVulkanFunctions vulkanFunctions = {}; vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; VmaAllocatorCreateInfo allocatorCreateInfo = {}; allocatorCreateInfo.vulkanApiVersion = vulkanApiVersion; allocatorCreateInfo.physicalDevice = physicalDevice; allocatorCreateInfo.device = device; allocatorCreateInfo.instance = instance; allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; if (vmaCreateAllocator(&allocatorCreateInfo, &vmaAllocator) != VK_SUCCESS) { throw love::Exception("failed to create vma allocator"); } } void Graphics::createSurface() { auto window = Module::getInstance(M_WINDOW); const void* handle = window->getHandle(); if (SDL_Vulkan_CreateSurface((SDL_Window*)handle, instance, &surface) != SDL_TRUE) { throw love::Exception("failed to create window surface"); } } SwapChainSupportDetails Graphics::querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } void Graphics::createSwapChain() { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities); uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = { indices.graphicsFamily.value(), indices.presentFamily.value() }; if (indices.graphicsFamily != indices.presentFamily) { createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; createInfo.pQueueFamilyIndices = nullptr; } createInfo.preTransform = swapChainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { throw love::Exception("failed to create swap chain"); } vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data()); swapChainImageFormat = surfaceFormat.format; swapChainExtent = extent; } VkSurfaceFormatKHR Graphics::chooseSwapSurfaceFormat(const std::vector& availableFormats) { for (const auto& availableFormat : availableFormats) { // fixme: what if this format and colorspace is not available? if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return availableFormat; } } return availableFormats[0]; } VkPresentModeKHR Graphics::chooseSwapPresentMode(const std::vector& availablePresentModes) { // needed ? for (const auto& availablePresentMode : availablePresentModes) { if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) { return availablePresentMode; } } return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D Graphics::chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != UINT32_MAX) { return capabilities.currentExtent; } else { auto window = Module::getInstance(M_WINDOW); const void* handle = window->getHandle(); int width, height; // is this the equivalent of glfwGetFramebufferSize ? SDL_Vulkan_GetDrawableSize((SDL_Window*)handle, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } } void Graphics::createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { VkImageViewCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.image = swapChainImages.at(i); createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; createInfo.format = swapChainImageFormat; createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; createInfo.subresourceRange.baseMipLevel = 0; createInfo.subresourceRange.levelCount = 1; createInfo.subresourceRange.baseArrayLayer = 0; createInfo.subresourceRange.layerCount = 1; if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews.at(i)) != VK_SUCCESS) { throw love::Exception("failed to create image views"); } } } void Graphics::createDefaultShaders() { for (int i = 0; i < Shader::STANDARD_MAX_ENUM; i++) { auto stype = (Shader::StandardShader)i; if (!Shader::standardShaders[i]) { std::vector stages; stages.push_back(Shader::getDefaultCode(stype, SHADERSTAGE_VERTEX)); stages.push_back(Shader::getDefaultCode(stype, SHADERSTAGE_PIXEL)); Shader::standardShaders[i] = newShader(stages, {}); } } } bool Graphics::usesConstantVertexColor(const VertexAttributes& vertexAttributes) { return !!(vertexAttributes.enableBits & (1u << ATTRIB_COLOR)); } void Graphics::createVulkanVertexFormat( VertexAttributes vertexAttributes, std::vector &bindingDescriptions, std::vector &attributeDescriptions) { std::set usedBuffers; auto allBits = vertexAttributes.enableBits; bool usesColor = false; uint8_t highestBufferBinding = 0; for (uint32_t i = 0; i < VertexAttributes::MAX; i++) { // change to loop like in opengl implementation ? uint32 bit = 1u << i; if (allBits & bit) { if (i == ATTRIB_COLOR) { usesColor = true; } auto attrib = vertexAttributes.attribs[i]; auto bufferBinding = attrib.bufferIndex; if (usedBuffers.find(bufferBinding) == usedBuffers.end()) { // use .contains() when c++20 is enabled usedBuffers.insert(bufferBinding); VkVertexInputBindingDescription bindingDescription{}; bindingDescription.binding = bufferBinding; if (vertexAttributes.instanceBits & (1u << bufferBinding)) { bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE; } else { bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; } bindingDescription.stride = vertexAttributes.bufferLayouts[bufferBinding].stride; bindingDescriptions.push_back(bindingDescription); highestBufferBinding = std::max(highestBufferBinding, bufferBinding); } VkVertexInputAttributeDescription attributeDescription{}; attributeDescription.location = i; attributeDescription.binding = bufferBinding; attributeDescription.offset = attrib.offsetFromVertex; attributeDescription.format = Vulkan::getVulkanVertexFormat(attrib.format); attributeDescriptions.push_back(attributeDescription); } } // do we need to use a constant VertexColor? if (!usesColor) { // FIXME: is there a case where gaps happen between buffer bindings? // then this doesn't work. We might need to enable null buffers again. const auto constantColorBufferBinding = highestBufferBinding + 1; VkVertexInputBindingDescription bindingDescription{}; bindingDescription.binding = constantColorBufferBinding; bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; bindingDescription.stride = 0; // no stride, will always read the same color multiple times. bindingDescriptions.push_back(bindingDescription); VkVertexInputAttributeDescription attributeDescription{}; attributeDescription.binding = constantColorBufferBinding; attributeDescription.location = ATTRIB_COLOR; attributeDescription.offset = 0; attributeDescription.format = VK_FORMAT_R32G32B32A32_SFLOAT; attributeDescriptions.push_back(attributeDescription); } } void Graphics::prepareDraw(const VertexAttributes& attributes, const BufferBindings& buffers, graphics::Texture* texture, PrimitiveType primitiveType, CullMode cullmode) { GraphicsPipelineConfiguration configuration; configuration.vertexAttributes = attributes; configuration.shader = (Shader*)Shader::current; configuration.primitiveType = primitiveType; configuration.wireFrame = states.back().wireframe; configuration.blendState = states.back().blend; configuration.colorChannelMask = states.back().colorMask; configuration.winding = states.back().winding; configuration.cullmode = cullmode; configuration.framebufferFormat = currentFramebufferOutputFormat; configuration.viewportWidth = currentViewportWidth; configuration.viewportHeight = currentViewportHeight; if (states.back().scissor) { configuration.scissorRect = states.back().scissorRect; } else { configuration.scissorRect = std::nullopt; } std::vector bufferVector; std::vector offsets; for (uint32_t i = 0; i < VertexAttributes::MAX; i++) { if (buffers.useBits & (1u << i)) { bufferVector.push_back((VkBuffer)buffers.info[i].buffer->getHandle()); offsets.push_back((VkDeviceSize)buffers.info[i].offset); } } if (usesConstantVertexColor(attributes)) { bufferVector.push_back((VkBuffer)batchedDrawBuffers[currentFrame].constantColorBuffer->getHandle()); offsets.push_back((VkDeviceSize)0); } auto currentUniformData = getCurrentBuiltinUniformData(); configuration.shader->setUniformData(currentUniformData); if (texture == nullptr) { configuration.shader->setMainTex(standardTexture.get()); } else { configuration.shader->setMainTex(texture); } ensureGraphicsPipelineConfiguration(configuration); configuration.shader->cmdPushDescriptorSets(commandBuffers.at(imageIndex), static_cast(currentFrame)); vkCmdBindVertexBuffers(commandBuffers.at(imageIndex), 0, static_cast(bufferVector.size()), bufferVector.data(), offsets.data()); } void Graphics::startRenderPass(Texture* texture, uint32_t w, uint32_t h) { VkRenderingAttachmentInfo colorAttachmentInfo{}; colorAttachmentInfo.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; colorAttachmentInfo.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; colorAttachmentInfo.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; if (texture) { colorAttachmentInfo.imageView = (VkImageView)texture->getRenderTargetHandle(); auto vulkanFormat = Vulkan::getTextureFormat(texture->getPixelFormat()); currentFramebufferOutputFormat = vulkanFormat.internalFormat; renderTargetTexture = texture; } else { colorAttachmentInfo.imageView = swapChainImageViews[imageIndex]; currentFramebufferOutputFormat = swapChainImageFormat; renderTargetTexture = nullptr; } colorAttachmentInfo.storeOp = VK_ATTACHMENT_STORE_OP_STORE; VkRenderingInfo renderingInfo{}; renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO; renderingInfo.renderArea.extent.width = w; renderingInfo.renderArea.extent.height = h; renderingInfo.layerCount = 1; renderingInfo.colorAttachmentCount = 1; renderingInfo.pColorAttachments = &colorAttachmentInfo; currentViewportWidth = (float)w; currentViewportHeight = (float)h; if (renderTargetTexture) { Vulkan::cmdTransitionImageLayout(commandBuffers.at(imageIndex), (VkImage)texture->getHandle(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } vkCmdBeginRendering(commandBuffers.at(imageIndex), &renderingInfo); currentGraphicsPipeline = VK_NULL_HANDLE; } void Graphics::endRenderPass() { vkCmdEndRendering(commandBuffers.at(imageIndex)); if (renderTargetTexture) { Vulkan::cmdTransitionImageLayout(commandBuffers.at(imageIndex), (VkImage)renderTargetTexture->getHandle(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); renderTargetTexture = nullptr; } } VkSampler Graphics::createSampler(const SamplerState& samplerState) { VkPhysicalDeviceProperties properties{}; vkGetPhysicalDeviceProperties(physicalDevice, &properties); VkSamplerCreateInfo samplerInfo{}; samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samplerInfo.magFilter = Vulkan::getFilter(samplerState.magFilter); samplerInfo.minFilter = Vulkan::getFilter(samplerState.minFilter); samplerInfo.addressModeU = Vulkan::getWrapMode(samplerState.wrapU); samplerInfo.addressModeV = Vulkan::getWrapMode(samplerState.wrapV); samplerInfo.addressModeW = Vulkan::getWrapMode(samplerState.wrapW); samplerInfo.anisotropyEnable = VK_TRUE; samplerInfo.maxAnisotropy = properties.limits.maxSamplerAnisotropy; // fixme: samplerState.maxAnisotropy samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; samplerInfo.unnormalizedCoordinates = VK_FALSE; if (samplerState.depthSampleMode.hasValue) { samplerInfo.compareEnable = VK_TRUE; samplerInfo.compareOp = Vulkan::getCompareOp(samplerState.depthSampleMode.value); } else { samplerInfo.compareEnable = VK_FALSE; samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS; } samplerInfo.mipmapMode = Vulkan::getMipMapMode(samplerState.mipmapFilter); samplerInfo.mipLodBias = samplerState.lodBias; samplerInfo.minLod = 0.0f; // fixme: samplerState.minLod samplerInfo.maxLod = 0.0f; // fixme: samplerState.maxLod VkSampler sampler; if (vkCreateSampler(device, &samplerInfo, nullptr, &sampler) != VK_SUCCESS) { throw love::Exception("failed to create sampler"); } return sampler; } VkSampler Graphics::getCachedSampler(const SamplerState& samplerState) { auto it = samplers.find(samplerState); if (it != samplers.end()) { return it->second; } else { VkSampler sampler = createSampler(samplerState); samplers.insert({samplerState, sampler}); return sampler; } } VkPipeline Graphics::createGraphicsPipeline(GraphicsPipelineConfiguration configuration) { auto &shaderStages = configuration.shader->getShaderStages(); std::vector bindingDescriptions; std::vector attributeDescriptions; createVulkanVertexFormat(configuration.vertexAttributes, bindingDescriptions, attributeDescriptions); VkPipelineVertexInputStateCreateInfo vertexInputInfo{}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexBindingDescriptionCount = static_cast(bindingDescriptions.size()); vertexInputInfo.pVertexBindingDescriptions = bindingDescriptions.data(); vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly{}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = Vulkan::getPrimitiveTypeTopology(configuration.primitiveType); inputAssembly.primitiveRestartEnable = VK_FALSE; VkViewport viewport{}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = configuration.viewportWidth; viewport.height = configuration.viewportHeight; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor{}; if (configuration.scissorRect.has_value()) { scissor.offset.x = configuration.scissorRect.value().x; scissor.offset.y = configuration.scissorRect.value().y; scissor.extent.width = static_cast(configuration.scissorRect.value().w); scissor.extent.height = static_cast(configuration.scissorRect.value().h); } else { scissor.offset = { 0, 0 }; scissor.extent = swapChainExtent; } VkPipelineViewportStateCreateInfo viewportState{}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.pViewports = &viewport; viewportState.scissorCount = 1; viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer{}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = Vulkan::getPolygonMode(configuration.wireFrame); rasterizer.lineWidth = 1.0f; rasterizer.cullMode = Vulkan::getCullMode(configuration.cullmode); rasterizer.frontFace = Vulkan::getFrontFace(configuration.winding); rasterizer.depthBiasEnable = VK_FALSE; rasterizer.depthBiasConstantFactor = 0.0f; rasterizer.depthBiasClamp = 0.0f; rasterizer.depthBiasSlopeFactor = 0.0f; VkPipelineMultisampleStateCreateInfo multisampling{}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampling.minSampleShading = 1.0f; // Optional multisampling.pSampleMask = nullptr; // Optional multisampling.alphaToCoverageEnable = VK_FALSE; // Optional multisampling.alphaToOneEnable = VK_FALSE; // Optional VkPipelineColorBlendAttachmentState colorBlendAttachment{}; colorBlendAttachment.colorWriteMask = Vulkan::getColorMask(configuration.colorChannelMask); colorBlendAttachment.blendEnable = Vulkan::getBool(configuration.blendState.enable); colorBlendAttachment.srcColorBlendFactor = Vulkan::getBlendFactor(configuration.blendState.srcFactorRGB); colorBlendAttachment.dstColorBlendFactor = Vulkan::getBlendFactor(configuration.blendState.dstFactorRGB); colorBlendAttachment.colorBlendOp = Vulkan::getBlendOp(configuration.blendState.operationRGB); colorBlendAttachment.srcAlphaBlendFactor = Vulkan::getBlendFactor(configuration.blendState.srcFactorA); colorBlendAttachment.dstAlphaBlendFactor = Vulkan::getBlendFactor(configuration.blendState.dstFactorA); colorBlendAttachment.alphaBlendOp = Vulkan::getBlendOp(configuration.blendState.operationA); VkPipelineColorBlendStateCreateInfo colorBlending{}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; colorBlending.blendConstants[0] = 0.0f; colorBlending.blendConstants[1] = 0.0f; colorBlending.blendConstants[2] = 0.0f; colorBlending.blendConstants[3] = 0.0f; VkFormat framebufferOutputFormat = configuration.framebufferFormat; VkPipelineRenderingCreateInfo pipelineRenderingCreateInfo{}; pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO; pipelineRenderingCreateInfo.colorAttachmentCount = 1; pipelineRenderingCreateInfo.pColorAttachmentFormats = &framebufferOutputFormat; VkGraphicsPipelineCreateInfo pipelineInfo{}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = static_cast(shaderStages.size()); pipelineInfo.pStages = shaderStages.data(); pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = nullptr; pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = nullptr; pipelineInfo.layout = configuration.shader->getGraphicsPipelineLayout(); pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineInfo.basePipelineIndex = -1; pipelineInfo.pNext = &pipelineRenderingCreateInfo; VkPipeline graphicsPipeline; if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { throw love::Exception("failed to create graphics pipeline"); } return graphicsPipeline; } void Graphics::ensureGraphicsPipelineConfiguration(GraphicsPipelineConfiguration configuration) { auto it = graphicsPipelines.find(configuration); if (it != graphicsPipelines.end()) { if (it->second != currentGraphicsPipeline) { vkCmdBindPipeline(commandBuffers.at(imageIndex), VK_PIPELINE_BIND_POINT_GRAPHICS, it->second); currentGraphicsPipeline = it->second; } } else { VkPipeline pipeline = createGraphicsPipeline(configuration); graphicsPipelines.insert({configuration, pipeline}); vkCmdBindPipeline(commandBuffers.at(imageIndex), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); currentGraphicsPipeline = pipeline; } } void Graphics::createCommandPool() { QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice); VkCommandPoolCreateInfo poolInfo{}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value(); poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT | VK_COMMAND_POOL_CREATE_TRANSIENT_BIT; if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) { throw love::Exception("failed to create command pool"); } } void Graphics::createCommandBuffers() { commandBuffers.resize(swapChainImages.size()); dataTransferCommandBuffers.resize(MAX_FRAMES_IN_FLIGHT); VkCommandBufferAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = (uint32_t)commandBuffers.size(); if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) { throw love::Exception("failed to allocate command buffers"); } VkCommandBufferAllocateInfo dataTransferAllocInfo{}; dataTransferAllocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; dataTransferAllocInfo.commandPool = commandPool; dataTransferAllocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; dataTransferAllocInfo.commandBufferCount = (uint32_t)MAX_FRAMES_IN_FLIGHT; if (vkAllocateCommandBuffers(device, &dataTransferAllocInfo, dataTransferCommandBuffers.data()) != VK_SUCCESS) { throw love::Exception("failed to allocate data transfer command buffers"); } } void Graphics::createSyncObjects() { imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); inFlightFences.resize(MAX_FRAMES_IN_FLIGHT); imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE); VkSemaphoreCreateInfo semaphoreInfo{}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo{}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores.at(i)) != VK_SUCCESS || vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores.at(i)) != VK_SUCCESS || vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences.at(i)) != VK_SUCCESS) { throw love::Exception("failed to create synchronization objects for a frame!"); } } } void Graphics::createDefaultTexture() { Texture::Settings settings; standardTexture.reset((Texture*)newTexture(settings)); } void Graphics::cleanup() { delete quadIndexBuffer; quadIndexBuffer = nullptr; cleanupSwapChain(); for (auto &cleanUpFns : cleanUpFunctions) { for (auto &cleanUpFn : cleanUpFns) { cleanUpFn(); } } cleanUpFunctions.clear(); vmaDestroyAllocator(vmaAllocator); batchedDrawBuffers.clear(); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr); vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr); vkDestroyFence(device, inFlightFences[i], nullptr); } vkFreeCommandBuffers(device, commandPool, static_cast(commandBuffers.size()), commandBuffers.data()); vkFreeCommandBuffers(device, commandPool, MAX_FRAMES_IN_FLIGHT, dataTransferCommandBuffers.data()); for (auto const& p : samplers) { vkDestroySampler(device, p.second, nullptr); } samplers.clear(); // fixme: maybe we should clean up some pipelines if they haven't been used in a while. for (auto const& p : graphicsPipelines) { vkDestroyPipeline(device, p.second, nullptr); } graphicsPipelines.clear(); vkDestroyCommandPool(device, commandPool, nullptr); vkDestroyDevice(device, nullptr); vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); } void Graphics::cleanupSwapChain() { for (size_t i = 0; i < swapChainImageViews.size(); i++) { vkDestroyImageView(device, swapChainImageViews[i], nullptr); } vkDestroySwapchainKHR(device, swapChain, nullptr); } void Graphics::recreateSwapChain() { vkDeviceWaitIdle(device); cleanupSwapChain(); createSwapChain(); createImageViews(); } love::graphics::Graphics* createInstance() { love::graphics::Graphics* instance = nullptr; try { instance = new Graphics(); } catch (love::Exception& e) { printf("Cannot create Vulkan renderer: %s\n", e.what()); } return instance; } } // vulkan } // graphics } // love