/** * Copyright (c) 2006-2024 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ // LOVE #include "MathModule.h" #include "common/Vector.h" #include "common/int.h" #include "common/StringMap.h" #include "BezierCurve.h" #include "Transform.h" // STL #include #include #include // C #include using std::list; using love::Vector2; namespace { // check if an angle is oriented counter clockwise inline bool is_oriented_ccw(const Vector2 &a, const Vector2 &b, const Vector2 &c) { // return det(b-a, c-a) >= 0 return ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x)) >= 0; } // check if a and b are on the same side of the line c->d bool on_same_side(const Vector2 &a, const Vector2 &b, const Vector2 &c, const Vector2 &d) { float px = d.x - c.x, py = d.y - c.y; // return det(p, a-c) * det(p, b-c) >= 0 float l = px * (a.y - c.y) - py * (a.x - c.x); float m = px * (b.y - c.y) - py * (b.x - c.x); return l * m >= 0; } // checks is p is contained in the triangle abc inline bool point_in_triangle(const Vector2 &p, const Vector2 &a, const Vector2 &b, const Vector2 &c) { return on_same_side(p,a, b,c) && on_same_side(p,b, a,c) && on_same_side(p,c, a,b); } // checks if any vertex in `vertices' is in the triangle abc. bool any_point_in_triangle(const std::list &vertices, const Vector2 &a, const Vector2 &b, const Vector2 &c) { for (const Vector2 *p : vertices) { if ((p != &a) && (p != &b) && (p != &c) && point_in_triangle(*p, a,b,c)) // oh god... return true; } return false; } inline bool is_ear(const Vector2 &a, const Vector2 &b, const Vector2 &c, const std::list &vertices) { return is_oriented_ccw(a,b,c) && !any_point_in_triangle(vertices, a,b,c); } } // anonymous namespace namespace love { namespace math { std::vector triangulate(const std::vector &polygon) { if (polygon.size() < 3) throw love::Exception("Not a polygon"); else if (polygon.size() == 3) return std::vector(1, Triangle(polygon[0], polygon[1], polygon[2])); // collect list of connections and record leftmost item to check if the polygon // has the expected winding std::vector next_idx(polygon.size()), prev_idx(polygon.size()); size_t idx_lm = 0; for (size_t i = 0; i < polygon.size(); ++i) { const love::Vector2 &lm = polygon[idx_lm], &p = polygon[i]; if (p.x < lm.x || (p.x == lm.x && p.y < lm.y)) idx_lm = i; next_idx[i] = i+1; prev_idx[i] = i-1; } next_idx[next_idx.size()-1] = 0; prev_idx[0] = prev_idx.size()-1; // check if the polygon has the expected winding and reverse polygon if needed if (!is_oriented_ccw(polygon[prev_idx[idx_lm]], polygon[idx_lm], polygon[next_idx[idx_lm]])) next_idx.swap(prev_idx); // collect list of concave polygons std::list concave_vertices; for (size_t i = 0; i < polygon.size(); ++i) { if (!is_oriented_ccw(polygon[prev_idx[i]], polygon[i], polygon[next_idx[i]])) concave_vertices.push_back(&polygon[i]); } // triangulation according to kong std::vector triangles; size_t n_vertices = polygon.size(); size_t current = 1, skipped = 0, next, prev; while (n_vertices > 3) { next = next_idx[current]; prev = prev_idx[current]; const Vector2 &a = polygon[prev], &b = polygon[current], &c = polygon[next]; if (is_ear(a,b,c, concave_vertices)) { triangles.push_back(Triangle(a,b,c)); next_idx[prev] = next; prev_idx[next] = prev; concave_vertices.remove(&b); --n_vertices; skipped = 0; } else if (++skipped > n_vertices) { throw love::Exception("Cannot triangulate polygon."); } current = next; } next = next_idx[current]; prev = prev_idx[current]; triangles.push_back(Triangle(polygon[prev], polygon[current], polygon[next])); return triangles; } bool isConvex(const std::vector &polygon) { if (polygon.size() < 3) return false; // a polygon is convex if all corners turn in the same direction // turning direction can be determined using the cross-product of // the forward difference vectors size_t i = polygon.size() - 2, j = polygon.size() - 1, k = 0; Vector2 p(polygon[j] - polygon[i]); Vector2 q(polygon[k] - polygon[j]); float winding = Vector2::cross(p, q); while (k+1 < polygon.size()) { i = j; j = k; k++; p = polygon[j] - polygon[i]; q = polygon[k] - polygon[j]; if (Vector2::cross(p, q) * winding < 0) return false; } return true; } /** * http://en.wikipedia.org/wiki/SRGB#The_reverse_transformation **/ float gammaToLinear(float c) { if (c <= 0.04045f) return c / 12.92f; else return powf((c + 0.055f) / 1.055f, 2.4f); } /** * http://en.wikipedia.org/wiki/SRGB#The_forward_transformation_.28CIE_xyY_or_CIE_XYZ_to_sRGB.29 **/ float linearToGamma(float c) { if (c <= 0.0031308f) return c * 12.92f; else return 1.055f * powf(c, 1.0f / 2.4f) - 0.055f; } Math::Math() : Module(M_MATH, "love.math") , rng() { RandomGenerator::Seed seed; seed.b64 = (uint64) time(nullptr); rng.setSeed(seed); } Math::~Math() { } RandomGenerator *Math::newRandomGenerator() { return new RandomGenerator(); } BezierCurve *Math::newBezierCurve(const std::vector &points) { return new BezierCurve(points); } Transform *Math::newTransform() { return new Transform(); } Transform *Math::newTransform(float x, float y, float a, float sx, float sy, float ox, float oy, float kx, float ky) { return new Transform(x, y, a, sx, sy, ox, oy, kx, ky); } } // math } // love