/** * Copyright (c) 2006-2014 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ // LOVE #include "BezierCurve.h" #include "common/Exception.h" #include using namespace std; namespace { /** * Subdivide Bezier polygon. **/ void subdivide(vector &points, int k) { if (k <= 0) return; // subdivision using de casteljau - subdivided control polygons are // on the 'edges' of the computation scheme, e.g: // // ------LEFT-------> // b00 b10 b20 b30 // b01 b11 b21 .--- // b02 b12 .---' // b03 .---'RIGHT // <--' // // the subdivided control polygon is: // b00, b10, b20, b30, b21, b12, b03 vector left, right; left.reserve(points.size()); right.reserve(points.size()); for (size_t step = 1; step < points.size(); ++step) { left.push_back(points[0]); right.push_back(points[points.size() - step]); for (size_t i = 0; i < points.size() - step; ++i) points[i] = (points[i] + points[i+1]) * .5; } left.push_back(points[0]); right.push_back(points[0]); // recurse subdivide(left, k-1); subdivide(right, k-1); // merge (right is in reversed order) points.resize(left.size() + right.size() - 1); for (size_t i = 0; i < left.size(); ++i) points[i] = left[i]; for (size_t i = 1; i < right.size(); ++i) points[i-1 + left.size()] = right[right.size() - i - 1]; } } namespace love { namespace math { BezierCurve::BezierCurve(const vector &pts) : controlPoints(pts) { } BezierCurve BezierCurve::getDerivative() const { if (getDegree() < 1) throw Exception("Cannot derive a curve of degree < 1."); // actually we can, it just doesn't make any sense. vector forward_differences(controlPoints.size()-1); float degree = float(getDegree()); for (size_t i = 0; i < forward_differences.size(); ++i) forward_differences[i] = (controlPoints[i+1] - controlPoints[i]) * degree; return BezierCurve(forward_differences); } const Vector &BezierCurve::getControlPoint(int i) const { if (i < 0) i += controlPoints.size(); if (i < 0 || (size_t) i >= controlPoints.size()) throw Exception("Invalid control point index"); return controlPoints[i]; } void BezierCurve::setControlPoint(int i, const Vector &point) { if (i < 0) i += controlPoints.size(); if (i < 0 || (size_t) i >= controlPoints.size()) throw Exception("Invalid control point index"); controlPoints[i] = point; } void BezierCurve::insertControlPoint(const Vector &point, int pos) { if (pos < 0) pos += controlPoints.size() + 1; if (pos < 0 ||(size_t) pos > controlPoints.size()) throw Exception("Invalid control point index"); controlPoints.insert(controlPoints.begin() + pos, point); } void BezierCurve::translate(const Vector &t) { for (size_t i = 0; i < controlPoints.size(); ++i) controlPoints[i] += t; } void BezierCurve::rotate(double phi, const Vector ¢er) { float c = cos(phi), s = sin(phi); for (size_t i = 0; i < controlPoints.size(); ++i) { Vector v = controlPoints[i] - center; controlPoints[i].x = c * v.x - s * v.y + center.x; controlPoints[i].y = s * v.x + c * v.y + center.y; } } void BezierCurve::scale(double s, const Vector ¢er) { for (size_t i = 0; i < controlPoints.size(); ++i) controlPoints[i] = (controlPoints[i] - center) * s + center; } Vector BezierCurve::evaluate(double t) const { if (t < 0 || t > 1) throw Exception("Invalid evaluation parameter: must be between 0 and 1"); if (controlPoints.size() < 2) throw Exception("Invalid Bezier curve: Not enough control points."); // de casteljau vector points(controlPoints); for (size_t step = 1; step < controlPoints.size(); ++step) for (size_t i = 0; i < controlPoints.size() - step; ++i) points[i] = points[i] * (1-t) + points[i+1] * t; return points[0]; } vector BezierCurve::render(size_t accuracy) const { if (controlPoints.size() < 2) throw Exception("Invalid Bezier curve: Not enough control points."); vector vertices(controlPoints); subdivide(vertices, accuracy); return vertices; } vector BezierCurve::renderSegment(double start, double end, size_t accuracy) const { if (controlPoints.size() < 2) throw Exception("Invalid Bezier curve: Not enough control points."); vector vertices(controlPoints); subdivide(vertices, accuracy); if (start > 0) { Vector startPoint = evaluate(start); for (size_t i = 0; i < vertices.size(); ++i) { if ((double)i / vertices.size() > start) { vertices.erase(vertices.begin(), vertices.begin() + i - 1); break; } } vertices.insert(vertices.begin(), startPoint); } if (end < 1) { Vector endPoint = evaluate(end); for (size_t i = vertices.size(); i > 0; --i) { if ((double)(i - 1) / vertices.size() < end) { vertices.erase(vertices.begin() + i, vertices.end()); break; } } vertices.insert(vertices.end(), endPoint); } return vertices; } } // namespace math } // namespace love