/** * Copyright (c) 2006-2016 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ #include "Matrix.h" // STD #include // memcpy #include namespace love { // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, float t[16]) { t[0] = (a.e[0]*b.e[0]) + (a.e[4]*b.e[1]) + (a.e[8]*b.e[2]) + (a.e[12]*b.e[3]); t[4] = (a.e[0]*b.e[4]) + (a.e[4]*b.e[5]) + (a.e[8]*b.e[6]) + (a.e[12]*b.e[7]); t[8] = (a.e[0]*b.e[8]) + (a.e[4]*b.e[9]) + (a.e[8]*b.e[10]) + (a.e[12]*b.e[11]); t[12] = (a.e[0]*b.e[12]) + (a.e[4]*b.e[13]) + (a.e[8]*b.e[14]) + (a.e[12]*b.e[15]); t[1] = (a.e[1]*b.e[0]) + (a.e[5]*b.e[1]) + (a.e[9]*b.e[2]) + (a.e[13]*b.e[3]); t[5] = (a.e[1]*b.e[4]) + (a.e[5]*b.e[5]) + (a.e[9]*b.e[6]) + (a.e[13]*b.e[7]); t[9] = (a.e[1]*b.e[8]) + (a.e[5]*b.e[9]) + (a.e[9]*b.e[10]) + (a.e[13]*b.e[11]); t[13] = (a.e[1]*b.e[12]) + (a.e[5]*b.e[13]) + (a.e[9]*b.e[14]) + (a.e[13]*b.e[15]); t[2] = (a.e[2]*b.e[0]) + (a.e[6]*b.e[1]) + (a.e[10]*b.e[2]) + (a.e[14]*b.e[3]); t[6] = (a.e[2]*b.e[4]) + (a.e[6]*b.e[5]) + (a.e[10]*b.e[6]) + (a.e[14]*b.e[7]); t[10] = (a.e[2]*b.e[8]) + (a.e[6]*b.e[9]) + (a.e[10]*b.e[10]) + (a.e[14]*b.e[11]); t[14] = (a.e[2]*b.e[12]) + (a.e[6]*b.e[13]) + (a.e[10]*b.e[14]) + (a.e[14]*b.e[15]); t[3] = (a.e[3]*b.e[0]) + (a.e[7]*b.e[1]) + (a.e[11]*b.e[2]) + (a.e[15]*b.e[3]); t[7] = (a.e[3]*b.e[4]) + (a.e[7]*b.e[5]) + (a.e[11]*b.e[6]) + (a.e[15]*b.e[7]); t[11] = (a.e[3]*b.e[8]) + (a.e[7]*b.e[9]) + (a.e[11]*b.e[10]) + (a.e[15]*b.e[11]); t[15] = (a.e[3]*b.e[12]) + (a.e[7]*b.e[13]) + (a.e[11]*b.e[14]) + (a.e[15]*b.e[15]); } void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, Matrix4 &t) { multiply(a, b, t.e); } // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | Matrix4::Matrix4() { setIdentity(); } Matrix4::Matrix4(const float elements[16]) { memcpy(e, elements, sizeof(float) * 16); } Matrix4::Matrix4(float t00, float t10, float t01, float t11, float x, float y) { setRawTransformation(t00, t10, t01, t11, x, y); } Matrix4::Matrix4(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky) { setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky); } Matrix4::~Matrix4() { } Matrix4 Matrix4::operator * (const Matrix4 &m) const { Matrix4 t; multiply(*this, m, t); return t; } void Matrix4::operator *= (const Matrix4 &m) { float t[16]; multiply(*this, m, t); memcpy(this->e, t, sizeof(float)*16); } const float *Matrix4::getElements() const { return e; } void Matrix4::setIdentity() { memset(e, 0, sizeof(float)*16); e[15] = e[10] = e[5] = e[0] = 1; } void Matrix4::setTranslation(float x, float y) { setIdentity(); e[12] = x; e[13] = y; } void Matrix4::setRotation(float rad) { setIdentity(); float c = cosf(rad), s = sinf(rad); e[0] = c; e[4] = -s; e[1] = s; e[5] = c; } void Matrix4::setScale(float sx, float sy) { setIdentity(); e[0] = sx; e[5] = sy; } void Matrix4::setShear(float kx, float ky) { setIdentity(); e[1] = ky; e[4] = kx; } void Matrix4::getApproximateScale(float &sx, float &sy) const { sx = sqrtf(e[0] * e[0] + e[4] * e[4]); sy = sqrtf(e[1] * e[1] + e[5] * e[5]); } void Matrix4::setRawTransformation(float t00, float t10, float t01, float t11, float x, float y) { memset(e, 0, sizeof(float)*16); // zero out matrix e[10] = e[15] = 1.0f; e[0] = t00; e[1] = t10; e[4] = t01; e[5] = t11; e[12] = x; e[13] = y; } void Matrix4::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky) { memset(e, 0, sizeof(float)*16); // zero out matrix float c = cosf(angle), s = sinf(angle); // matrix multiplication carried out on paper: // |1 x| |c -s | |sx | | 1 ky | |1 -ox| // | 1 y| |s c | | sy | |kx 1 | | 1 -oy| // | 1 | | 1 | | 1 | | 1 | | 1 | // | 1| | 1| | 1| | 1| | 1 | // move rotate scale skew origin e[10] = e[15] = 1.0f; e[0] = c * sx - ky * s * sy; // = a e[1] = s * sx + ky * c * sy; // = b e[4] = kx * c * sx - s * sy; // = c e[5] = kx * s * sx + c * sy; // = d e[12] = x - ox * e[0] - oy * e[4]; e[13] = y - ox * e[1] - oy * e[5]; } void Matrix4::translate(float x, float y) { Matrix4 t; t.setTranslation(x, y); this->operator *=(t); } void Matrix4::rotate(float rad) { Matrix4 t; t.setRotation(rad); this->operator *=(t); } void Matrix4::scale(float sx, float sy) { Matrix4 t; t.setScale(sx, sy); this->operator *=(t); } void Matrix4::shear(float kx, float ky) { Matrix4 t; t.setShear(kx,ky); this->operator *=(t); } Matrix4 Matrix4::inverse() const { Matrix4 inv; inv.e[0] = e[5] * e[10] * e[15] - e[5] * e[11] * e[14] - e[9] * e[6] * e[15] + e[9] * e[7] * e[14] + e[13] * e[6] * e[11] - e[13] * e[7] * e[10]; inv.e[4] = -e[4] * e[10] * e[15] + e[4] * e[11] * e[14] + e[8] * e[6] * e[15] - e[8] * e[7] * e[14] - e[12] * e[6] * e[11] + e[12] * e[7] * e[10]; inv.e[8] = e[4] * e[9] * e[15] - e[4] * e[11] * e[13] - e[8] * e[5] * e[15] + e[8] * e[7] * e[13] + e[12] * e[5] * e[11] - e[12] * e[7] * e[9]; inv.e[12] = -e[4] * e[9] * e[14] + e[4] * e[10] * e[13] + e[8] * e[5] * e[14] - e[8] * e[6] * e[13] - e[12] * e[5] * e[10] + e[12] * e[6] * e[9]; inv.e[1] = -e[1] * e[10] * e[15] + e[1] * e[11] * e[14] + e[9] * e[2] * e[15] - e[9] * e[3] * e[14] - e[13] * e[2] * e[11] + e[13] * e[3] * e[10]; inv.e[5] = e[0] * e[10] * e[15] - e[0] * e[11] * e[14] - e[8] * e[2] * e[15] + e[8] * e[3] * e[14] + e[12] * e[2] * e[11] - e[12] * e[3] * e[10]; inv.e[9] = -e[0] * e[9] * e[15] + e[0] * e[11] * e[13] + e[8] * e[1] * e[15] - e[8] * e[3] * e[13] - e[12] * e[1] * e[11] + e[12] * e[3] * e[9]; inv.e[13] = e[0] * e[9] * e[14] - e[0] * e[10] * e[13] - e[8] * e[1] * e[14] + e[8] * e[2] * e[13] + e[12] * e[1] * e[10] - e[12] * e[2] * e[9]; inv.e[2] = e[1] * e[6] * e[15] - e[1] * e[7] * e[14] - e[5] * e[2] * e[15] + e[5] * e[3] * e[14] + e[13] * e[2] * e[7] - e[13] * e[3] * e[6]; inv.e[6] = -e[0] * e[6] * e[15] + e[0] * e[7] * e[14] + e[4] * e[2] * e[15] - e[4] * e[3] * e[14] - e[12] * e[2] * e[7] + e[12] * e[3] * e[6]; inv.e[10] = e[0] * e[5] * e[15] - e[0] * e[7] * e[13] - e[4] * e[1] * e[15] + e[4] * e[3] * e[13] + e[12] * e[1] * e[7] - e[12] * e[3] * e[5]; inv.e[14] = -e[0] * e[5] * e[14] + e[0] * e[6] * e[13] + e[4] * e[1] * e[14] - e[4] * e[2] * e[13] - e[12] * e[1] * e[6] + e[12] * e[2] * e[5]; inv.e[3] = -e[1] * e[6] * e[11] + e[1] * e[7] * e[10] + e[5] * e[2] * e[11] - e[5] * e[3] * e[10] - e[9] * e[2] * e[7] + e[9] * e[3] * e[6]; inv.e[7] = e[0] * e[6] * e[11] - e[0] * e[7] * e[10] - e[4] * e[2] * e[11] + e[4] * e[3] * e[10] + e[8] * e[2] * e[7] - e[8] * e[3] * e[6]; inv.e[11] = -e[0] * e[5] * e[11] + e[0] * e[7] * e[9] + e[4] * e[1] * e[11] - e[4] * e[3] * e[9] - e[8] * e[1] * e[7] + e[8] * e[3] * e[5]; inv.e[15] = e[0] * e[5] * e[10] - e[0] * e[6] * e[9] - e[4] * e[1] * e[10] + e[4] * e[2] * e[9] + e[8] * e[1] * e[6] - e[8] * e[2] * e[5]; float det = e[0] * inv.e[0] + e[1] * inv.e[4] + e[2] * inv.e[8] + e[3] * inv.e[12]; float invdet = 1.0f / det; for (int i = 0; i < 16; i++) inv.e[i] *= invdet; return inv; } Matrix4 Matrix4::ortho(float left, float right, float bottom, float top) { Matrix4 m; m.e[0] = 2.0f / (right - left); m.e[5] = 2.0f / (top - bottom); m.e[10] = -1.0; m.e[12] = -(right + left) / (right - left); m.e[13] = -(top + bottom) / (top - bottom); return m; } /** * | e0 e3 e6 | * | e1 e4 e7 | * | e2 e5 e8 | **/ Matrix3::Matrix3() { setIdentity(); } Matrix3::Matrix3(const Matrix4 &mat4) { const float *mat4elems = mat4.getElements(); // Column 0. e[0] = mat4elems[0]; e[1] = mat4elems[1]; e[2] = mat4elems[2]; // Column 1. e[3] = mat4elems[4]; e[4] = mat4elems[5]; e[5] = mat4elems[6]; // Column 2. e[6] = mat4elems[8]; e[7] = mat4elems[9]; e[8] = mat4elems[10]; } Matrix3::Matrix3(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky) { setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky); } Matrix3::~Matrix3() { } void Matrix3::setIdentity() { memset(e, 0, sizeof(float) * 9); e[8] = e[4] = e[0] = 1.0f; } Matrix3 Matrix3::operator * (const love::Matrix3 &m) const { Matrix3 t; t.e[0] = (e[0]*m.e[0]) + (e[3]*m.e[1]) + (e[6]*m.e[2]); t.e[3] = (e[0]*m.e[3]) + (e[3]*m.e[4]) + (e[6]*m.e[5]); t.e[6] = (e[0]*m.e[6]) + (e[3]*m.e[7]) + (e[6]*m.e[8]); t.e[1] = (e[1]*m.e[0]) + (e[4]*m.e[1]) + (e[7]*m.e[2]); t.e[4] = (e[1]*m.e[3]) + (e[4]*m.e[4]) + (e[7]*m.e[5]); t.e[7] = (e[1]*m.e[6]) + (e[4]*m.e[7]) + (e[7]*m.e[8]); t.e[2] = (e[2]*m.e[0]) + (e[5]*m.e[1]) + (e[8]*m.e[2]); t.e[5] = (e[2]*m.e[3]) + (e[5]*m.e[4]) + (e[8]*m.e[5]); t.e[8] = (e[2]*m.e[6]) + (e[5]*m.e[7]) + (e[8]*m.e[8]); return t; } void Matrix3::operator *= (const Matrix3 &m) { Matrix3 t = (*this) * m; memcpy(e, t.e, sizeof(float) * 9); } const float *Matrix3::getElements() const { return e; } Matrix3 Matrix3::transposedInverse() const { // e0 e3 e6 // e1 e4 e7 // e2 e5 e8 float det = e[0] * (e[4]*e[8] - e[7]*e[5]) - e[1] * (e[3]*e[8] - e[5]*e[6]) + e[2] * (e[3]*e[7] - e[4]*e[6]); float invdet = 1.0f / det; Matrix3 m; m.e[0] = invdet * (e[4]*e[8] - e[7]*e[5]); m.e[3] = -invdet * (e[1]*e[8] - e[2]*e[7]); m.e[6] = invdet * (e[1]*e[5] - e[2]*e[4]); m.e[1] = -invdet * (e[3]*e[8] - e[5]*e[6]); m.e[4] = invdet * (e[0]*e[8] - e[2]*e[6]); m.e[7] = -invdet * (e[0]*e[5] - e[3]*e[2]); m.e[2] = invdet * (e[3]*e[7] - e[6]*e[4]); m.e[5] = -invdet * (e[0]*e[7] - e[6]*e[1]); m.e[8] = invdet * (e[0]*e[4] - e[3]*e[1]); return m; } void Matrix3::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky) { float c = cosf(angle), s = sinf(angle); // matrix multiplication carried out on paper: // |1 x| |c -s | |sx | | 1 ky | |1 -ox| // | 1 y| |s c | | sy | |kx 1 | | 1 -oy| // | 1| | 1| | 1| | 1| | 1 | // move rotate scale skew origin e[0] = c * sx - ky * s * sy; // = a e[1] = s * sx + ky * c * sy; // = b e[3] = kx * c * sx - s * sy; // = c e[4] = kx * s * sx + c * sy; // = d e[6] = x - ox * e[0] - oy * e[3]; e[7] = y - ox * e[1] - oy * e[4]; e[2] = e[5] = 0.0f; e[8] = 1.0f; } } // love