/** * Copyright (c) 2006-2017 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ #include "Transform.h" namespace love { namespace math { love::Type Transform::type("Transform", &Object::type); Transform::Transform() : matrix() , inverseDirty(true) , inverseMatrix() { } Transform::Transform(const Matrix4 &m) : matrix(m) , inverseDirty(true) , inverseMatrix() { } Transform::Transform(float x, float y, float a, float sx, float sy, float ox, float oy, float kx, float ky) : matrix(x, y, a, sx, sy, ox, oy, kx, ky) , inverseDirty(true) , inverseMatrix() { } Transform::~Transform() { } Transform *Transform::clone() { return new Transform(*this); } Transform *Transform::inverse() { return new Transform(getInverseMatrix()); } void Transform::apply(Transform *other) { matrix *= other->getMatrix(); inverseDirty = true; } void Transform::translate(float x, float y) { matrix.translate(x, y); inverseDirty = true; } void Transform::rotate(float angle) { matrix.rotate(angle); inverseDirty = true; } void Transform::scale(float x, float y) { matrix.scale(x, y); inverseDirty = true; } void Transform::shear(float x, float y) { matrix.shear(x, y); inverseDirty = true; } void Transform::reset() { matrix.setIdentity(); inverseDirty = true; } void Transform::setTransformation(float x, float y, float a, float sx, float sy, float ox, float oy, float kx, float ky) { matrix.setTransformation(x, y, a, sx, sy, ox, oy, kx, ky); inverseDirty = true; } love::Vector2 Transform::transformPoint(love::Vector2 p) const { love::Vector2 result; matrix.transformXY(&result, &p, 1); return result; } love::Vector2 Transform::inverseTransformPoint(love::Vector2 p) { love::Vector2 result; getInverseMatrix().transformXY(&result, &p, 1); return result; } const Matrix4 &Transform::getMatrix() const { return matrix; } void Transform::setMatrix(const Matrix4 &m) { matrix = m; inverseDirty = true; } bool Transform::getConstant(const char *in, MatrixLayout &out) { return matrixLayouts.find(in, out); } bool Transform::getConstant(MatrixLayout in, const char *&out) { return matrixLayouts.find(in, out); } StringMap::Entry Transform::matrixLayoutEntries[] = { { "row", MATRIX_ROW_MAJOR }, { "column", MATRIX_COLUMN_MAJOR }, }; StringMap Transform::matrixLayouts(Transform::matrixLayoutEntries, sizeof(Transform::matrixLayoutEntries)); } // math } // love