/** * Copyright (c) 2006-2012 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ #include "Matrix.h" // STD #include // memcpy #include namespace love { // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | Matrix::Matrix() { setIdentity(); } Matrix::~Matrix() { } // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | Matrix Matrix::operator * (const Matrix &m) const { Matrix t; t.e[0] = (e[0]*m.e[0]) + (e[4]*m.e[1]) + (e[8]*m.e[2]) + (e[12]*m.e[3]); t.e[4] = (e[0]*m.e[4]) + (e[4]*m.e[5]) + (e[8]*m.e[6]) + (e[12]*m.e[7]); t.e[8] = (e[0]*m.e[8]) + (e[4]*m.e[9]) + (e[8]*m.e[10]) + (e[12]*m.e[11]); t.e[12] = (e[0]*m.e[12]) + (e[4]*m.e[13]) + (e[8]*m.e[14]) + (e[12]*m.e[15]); t.e[1] = (e[1]*m.e[0]) + (e[5]*m.e[1]) + (e[9]*m.e[2]) + (e[13]*m.e[3]); t.e[5] = (e[1]*m.e[4]) + (e[5]*m.e[5]) + (e[9]*m.e[6]) + (e[13]*m.e[7]); t.e[9] = (e[1]*m.e[8]) + (e[5]*m.e[9]) + (e[9]*m.e[10]) + (e[13]*m.e[11]); t.e[13] = (e[1]*m.e[12]) + (e[5]*m.e[13]) + (e[9]*m.e[14]) + (e[13]*m.e[15]); t.e[2] = (e[2]*m.e[0]) + (e[6]*m.e[1]) + (e[10]*m.e[2]) + (e[14]*m.e[3]); t.e[6] = (e[2]*m.e[4]) + (e[6]*m.e[5]) + (e[10]*m.e[6]) + (e[14]*m.e[7]); t.e[10] = (e[2]*m.e[8]) + (e[6]*m.e[9]) + (e[10]*m.e[10]) + (e[14]*m.e[11]); t.e[14] = (e[2]*m.e[12]) + (e[6]*m.e[13]) + (e[10]*m.e[14]) + (e[14]*m.e[15]); t.e[3] = (e[3]*m.e[0]) + (e[7]*m.e[1]) + (e[11]*m.e[2]) + (e[15]*m.e[3]); t.e[7] = (e[3]*m.e[4]) + (e[7]*m.e[5]) + (e[11]*m.e[6]) + (e[15]*m.e[7]); t.e[11] = (e[3]*m.e[8]) + (e[7]*m.e[9]) + (e[11]*m.e[10]) + (e[15]*m.e[11]); t.e[15] = (e[3]*m.e[12]) + (e[7]*m.e[13]) + (e[11]*m.e[14]) + (e[15]*m.e[15]); return t; } void Matrix::operator *= (const Matrix &m) { Matrix t = (*this) * m; memcpy((void *)this->e, (void *)t.e, sizeof(float)*16); } const float *Matrix::getElements() const { return e; } void Matrix::setIdentity() { memset(e, 0, sizeof(float)*16); e[0] = e[5] = e[10] = e[15] = 1; } void Matrix::setTranslation(float x, float y) { setIdentity(); e[12] = x; e[13] = y; } void Matrix::setRotation(float rad) { setIdentity(); float c = cos(rad), s = sin(rad); e[0] = c; e[4] = -s; e[1] = s; e[5] = c; } void Matrix::setScale(float sx, float sy) { setIdentity(); e[0] = sx; e[5] = sy; } void Matrix::setShear(float kx, float ky) { setIdentity(); e[1] = ky; e[4] = kx; } void Matrix::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky) { memset(e, 0, sizeof(float)*16); // zero out matrix float c = cos(angle), s = sin(angle); // matrix multiplication carried out on paper: // |1 x| |c -s | |sx | | 1 ky | |1 -ox| // | 1 y| |s c | | sy | |kx 1 | | 1 -oy| // | 1 | | 1 | | 1 | | 1 | | 1 | // | 1| | 1| | 1| | 1| | 1 | // move rotate scale skew origin e[10] = e[15] = 1.0f; e[0] = c * sx - ky * s * sy; // = a e[1] = s * sx + ky * c * sy; // = b e[4] = kx * c * sx - s * sy; // = c e[5] = kx * s * sx + c * sy; // = d e[12] = x - ox * e[0] - oy * e[4]; e[13] = y - ox * e[1] - oy * e[5]; } void Matrix::translate(float x, float y) { Matrix t; t.setTranslation(x, y); this->operator *=(t); } void Matrix::rotate(float rad) { Matrix t; t.setRotation(rad); this->operator *=(t); } void Matrix::scale(float sx, float sy) { Matrix t; t.setScale(sx, sy); this->operator *=(t); } void Matrix::shear(float kx, float ky) { Matrix t; t.setShear(kx,ky); this->operator *=(t); } // | x | // | y | // | 0 | // | 1 | // | e0 e4 e8 e12 | // | e1 e5 e9 e13 | // | e2 e6 e10 e14 | // | e3 e7 e11 e15 | void Matrix::transform(vertex *dst, const vertex *src, int size) const { for (int i = 0; i