/** * Copyright (c) 2006-2013 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ #include // LOVE #include "Polyline.h" // OpenGL #include "OpenGL.h" // treat adjacent segments with angles between their directions <5 degree as straight static const float LINES_PARALLEL_EPS = 0.05f; namespace love { namespace graphics { namespace opengl { void Polyline::render(const float *coords, size_t count, size_t size_hint, float halfwidth, float pixel_size, bool draw_overdraw) { static std::vector anchors; anchors.clear(); anchors.reserve(size_hint); static std::vector normals; normals.clear(); normals.reserve(size_hint); // prepare vertex arrays if (draw_overdraw) halfwidth -= pixel_size * .3; // compute sleeve bool is_looping = (coords[0] == coords[count - 2]) && (coords[1] == coords[count - 1]); Vector s; if (!is_looping) // virtual starting point at second point mirrored on first point s = Vector(coords[2] - coords[0], coords[3] - coords[1]); else // virtual starting point at last vertex s = Vector(coords[0] - coords[count - 4], coords[1] - coords[count - 3]); float len_s = s.getLength(); Vector ns = s.getNormal(halfwidth / len_s); Vector q, r(coords[0], coords[1]); for (size_t i = 0; i + 3 < count; i += 2) { q = r; r = Vector(coords[i + 2], coords[i + 3]); renderEdge(anchors, normals, s, len_s, ns, q, r, halfwidth); } q = r; r = is_looping ? Vector(coords[2], coords[3]) : r + s; renderEdge(anchors, normals, s, len_s, ns, q, r, halfwidth); vertex_count = normals.size(); vertices = new Vector[vertex_count]; for (size_t i = 0; i < vertex_count; ++i) vertices[i] = anchors[i] + normals[i]; if (draw_overdraw) render_overdraw(normals, pixel_size, is_looping); } void NoneJoinPolyline::renderEdge(std::vector &anchors, std::vector &normals, Vector &s, float &len_s, Vector &ns, const Vector &q, const Vector &r, float hw) { anchors.push_back(q); anchors.push_back(q); normals.push_back(ns); normals.push_back(-ns); s = (r - q); len_s = s.getLength(); ns = s.getNormal(hw / len_s); anchors.push_back(q); anchors.push_back(q); normals.push_back(-ns); normals.push_back(ns); } /** Calculate line boundary points. * * Sketch: * * u1 * -------------+---...___ * | ```'''-- --- * p- - - - - - q- - . _ _ | w/2 * | ` ' ' r + * -------------+---...___ | w/2 * u2 ```'''-- --- * * u1 and u2 depend on four things: * - the half line width w/2 * - the previous line vertex p * - the current line vertex q * - the next line vertex r * * u1/u2 are the intersection points of the parallel lines to p-q and q-r, * i.e. the point where * * (q + w/2 * ns) + lambda * (q - p) = (q + w/2 * nt) + mu * (r - q) (u1) * (q - w/2 * ns) + lambda * (q - p) = (q - w/2 * nt) + mu * (r - q) (u2) * * with nt,nt being the normals on the segments s = p-q and t = q-r, * * ns = perp(s) / |s| * nt = perp(t) / |t|. * * Using the linear equation system (similar for u2) * * q + w/2 * ns + lambda * s - (q + w/2 * nt + mu * t) = 0 (u1) * <=> q-q + lambda * s - mu * t = (nt - ns) * w/2 * <=> lambda * s - mu * t = (nt - ns) * w/2 * * the intersection points can be efficiently calculated using Cramer's rule. */ void MiterJoinPolyline::renderEdge(std::vector &anchors, std::vector &normals, Vector &s, float &len_s, Vector &ns, const Vector &q, const Vector &r, float hw) { Vector t = (r - q); float len_t = t.getLength(); Vector nt = t.getNormal(hw / len_t); anchors.push_back(q); anchors.push_back(q); float det = s ^ t; if (fabs(det) / (len_s * len_t) < LINES_PARALLEL_EPS && s * t > 0) { // lines parallel, compute as u1 = q + ns * w/2, u2 = q - ns * w/2 normals.push_back(ns); normals.push_back(-ns); } else { // cramers rule float lambda = ((nt - ns) ^ t) / det; Vector d = ns + s * lambda; normals.push_back(d); normals.push_back(-d); } s = t; ns = nt; len_s = len_t; } /** Calculate line boundary points. * * Sketch: * * uh1___uh2 * .' '. * .' q '. * .' ' ' '. *.' ' .'. ' '. * ' .' ul'. ' * p .' '. r * * * ul can be found as above, uh1 and uh2 are much simpler: * * uh1 = q + ns * w/2, uh2 = q + nt * w/2 */ void BevelJoinPolyline::renderEdge(std::vector &anchors, std::vector &normals, Vector &s, float &len_s, Vector &ns, const Vector &q, const Vector &r, float hw) { Vector t = (r - q); float len_t = t.getLength(); float det = s ^ t; if (fabs(det) / (len_s * len_t) < LINES_PARALLEL_EPS && s * t > 0) { // lines parallel, compute as u1 = q + ns * w/2, u2 = q - ns * w/2 Vector n = t.getNormal(hw / len_t); anchors.push_back(q); anchors.push_back(q); normals.push_back(n); normals.push_back(-n); s = t; len_s = len_t; return; // early out } // cramers rule Vector nt= t.getNormal(hw / len_t); float lambda = ((nt - ns) ^ t) / det; Vector d = ns + s * lambda; anchors.push_back(q); anchors.push_back(q); anchors.push_back(q); anchors.push_back(q); if (det > 0) // 'left' turn -> intersection on the top { normals.push_back(d); normals.push_back(-ns); normals.push_back(d); normals.push_back(-nt); } else { normals.push_back(ns); normals.push_back(-d); normals.push_back(nt); normals.push_back(-d); } s = t; len_s = len_t; ns = nt; } void Polyline::render_overdraw(const std::vector &normals, float pixel_size, bool is_looping) { overdraw_vertex_count = 2 * vertex_count + (is_looping ? 0 : 2); overdraw = new Vector[overdraw_vertex_count]; // upper segment for (size_t i = 0; i + 1 < vertex_count; i += 2) { overdraw[i] = vertices[i]; overdraw[i+1] = vertices[i] + normals[i] * (pixel_size / normals[i].getLength()); } // lower segment for (size_t i = 0; i + 1 < vertex_count; i += 2) { size_t k = vertex_count - i - 1; overdraw[vertex_count + i] = vertices[k]; overdraw[vertex_count + i+1] = vertices[k] + normals[k] * (pixel_size / normals[i].getLength()); } // if not looping, the outer overdraw vertices need to be displaced // to cover the line endings, i.e.: // +- - - - //- - + +- - - - - //- - - + // +-------//-----+ : +-------//-----+ : // | core // line | --> : | core // line | : // +-----//-------+ : +-----//-------+ : // +- - //- - - - + +- - - //- - - - - + if (!is_looping) { // left edge Vector spacer = (overdraw[1] - overdraw[3]); spacer.normalize(pixel_size); overdraw[1] += spacer; overdraw[overdraw_vertex_count - 3] += spacer; // right edge spacer = (overdraw[vertex_count-1] - overdraw[vertex_count-3]); spacer.normalize(pixel_size); overdraw[vertex_count-1] += spacer; overdraw[vertex_count+1] += spacer; // we need to draw two more triangles to close the // overdraw at the line start. overdraw[overdraw_vertex_count-2] = overdraw[0]; overdraw[overdraw_vertex_count-1] = overdraw[1]; } } void NoneJoinPolyline::render_overdraw(const std::vector &/*normals*/, float pixel_size, bool /*is_looping*/) { overdraw_vertex_count = 4 * (vertex_count-2); // less than ideal overdraw = new Vector[overdraw_vertex_count]; for (size_t i = 2; i + 3 < vertex_count; i += 4) { Vector s = vertices[i] - vertices[i+3]; Vector t = vertices[i] - vertices[i+1]; s.normalize(pixel_size); t.normalize(pixel_size); const size_t k = 4 * (i - 2); overdraw[k ] = vertices[i]; overdraw[k+1] = vertices[i] + s + t; overdraw[k+2] = vertices[i+1] + s - t; overdraw[k+3] = vertices[i+1]; overdraw[k+4] = vertices[i+1]; overdraw[k+5] = vertices[i+1] + s - t; overdraw[k+6] = vertices[i+2] - s - t; overdraw[k+7] = vertices[i+2]; overdraw[k+8] = vertices[i+2]; overdraw[k+9] = vertices[i+2] - s - t; overdraw[k+10] = vertices[i+3] - s + t; overdraw[k+11] = vertices[i+3]; overdraw[k+12] = vertices[i+3]; overdraw[k+13] = vertices[i+3] - s + t; overdraw[k+14] = vertices[i] + s + t; overdraw[k+15] = vertices[i]; } } Polyline::~Polyline() { if (vertices) delete[] vertices; if (overdraw) delete[] overdraw; } void Polyline::draw() { gl.prepareDraw(); // draw the core line gl.bindTexture(0); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, (const GLvoid *)vertices); glDrawArrays(draw_mode, 0, vertex_count); if (overdraw) { // prepare colors: Color c = gl.getColor(); Color *colors = new Color[overdraw_vertex_count]; fill_color_array(colors, c); glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4, GL_UNSIGNED_BYTE, 0, colors); glVertexPointer(2, GL_FLOAT, 0, (const GLvoid *)overdraw); glDrawArrays(draw_mode, 0, overdraw_vertex_count); glDisableClientState(GL_COLOR_ARRAY); delete[] colors; gl.setColor(c); } glDisableClientState(GL_VERTEX_ARRAY); } void Polyline::fill_color_array(Color *colors, const Color &c) { for (size_t i = 0; i < overdraw_vertex_count; ++i) { colors[i] = c; // avoids branching. equiv to if (i%2 == 1) colors[i].a = 0; colors[i].a *= GLubyte((i+1) % 2); } } void NoneJoinPolyline::fill_color_array(Color *colors, const Color &c) { for (size_t i = 0; i < overdraw_vertex_count; ++i) { colors[i] = c; // if (i % 4 == 1 || i % 4 == 2) colors[i].a = 0 colors[i].a *= GLubyte((i+1) % 4 < 2); } } } // opengl } // graphics } // love