/** * Copyright (c) 2006-2017 LOVE Development Team * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. **/ // LOVE #include "Graphics.h" #include "math/MathModule.h" #include "Polyline.h" #include "font/Font.h" #include "window/Window.h" // C++ #include namespace love { namespace graphics { static bool gammaCorrect = false; void setGammaCorrect(bool gammacorrect) { gammaCorrect = gammacorrect; } bool isGammaCorrect() { return gammaCorrect; } void gammaCorrectColor(Colorf &c) { if (isGammaCorrect()) { c.r = math::gammaToLinear(c.r); c.g = math::gammaToLinear(c.g); c.b = math::gammaToLinear(c.b); } } Colorf gammaCorrectColor(const Colorf &c) { Colorf r = c; gammaCorrectColor(r); return r; } void unGammaCorrectColor(Colorf &c) { if (isGammaCorrect()) { c.r = math::linearToGamma(c.r); c.g = math::linearToGamma(c.g); c.b = math::linearToGamma(c.b); } } Colorf unGammaCorrectColor(const Colorf &c) { Colorf r = c; unGammaCorrectColor(r); return r; } love::Type Graphics::type("graphics", &Module::type); Shader::ShaderSource Graphics::defaultShaderCode[Shader::LANGUAGE_MAX_ENUM][2]; Shader::ShaderSource Graphics::defaultVideoShaderCode[Shader::LANGUAGE_MAX_ENUM][2]; Graphics::Graphics() : width(0) , height(0) , pixelWidth(0) , pixelHeight(0) , created(false) , active(true) , writingToStencil(false) , streamBufferState() , projectionMatrix() , canvasSwitchCount(0) { transformStack.reserve(16); transformStack.push_back(Matrix4()); pixelScaleStack.reserve(16); pixelScaleStack.push_back(1); if (!Shader::initialize()) throw love::Exception("Shader support failed to initialize!"); } Graphics::~Graphics() { states.clear(); defaultFont.set(nullptr); if (Shader::defaultShader) { Shader::defaultShader->release(); Shader::defaultShader = nullptr; } if (Shader::defaultVideoShader) { Shader::defaultVideoShader->release(); Shader::defaultVideoShader = nullptr; } delete streamBufferState.vb[0]; delete streamBufferState.vb[1]; delete streamBufferState.indexBuffer; Shader::deinitialize(); } Quad *Graphics::newQuad(Quad::Viewport v, double sw, double sh) { return new Quad(v, sw, sh); } bool Graphics::validateShader(bool gles, const Shader::ShaderSource &source, std::string &err) { return Shader::validate(this, gles, source, true, err); } int Graphics::getWidth() const { return width; } int Graphics::getHeight() const { return height; } int Graphics::getPixelWidth() const { return pixelWidth; } int Graphics::getPixelHeight() const { return pixelHeight; } double Graphics::getCurrentPixelDensity() const { if (states.back().canvases.size() > 0) { love::graphics::Canvas *c = states.back().canvases[0]; return (double) c->getPixelHeight() / (double) c->getHeight(); } return getScreenPixelDensity(); } double Graphics::getScreenPixelDensity() const { return (double) getPixelHeight() / (double) getHeight(); } bool Graphics::isCreated() const { return created; } bool Graphics::isActive() const { // The graphics module is only completely 'active' if there's a window, a // context, and the active variable is set. auto window = getInstance(M_WINDOW); return active && isCreated() && window != nullptr && window->isOpen(); } void Graphics::reset() { DisplayState s; stopDrawToStencilBuffer(); restoreState(s); origin(); } /** * State functions. **/ void Graphics::restoreState(const DisplayState &s) { setColor(s.color); setBackgroundColor(s.backgroundColor); setBlendMode(s.blendMode, s.blendAlphaMode); setLineWidth(s.lineWidth); setLineStyle(s.lineStyle); setLineJoin(s.lineJoin); setPointSize(s.pointSize); if (s.scissor) setScissor(s.scissorRect); else setScissor(); setStencilTest(s.stencilCompare, s.stencilTestValue); setFont(s.font.get()); setShader(s.shader.get()); setCanvas(s.canvases); setColorMask(s.colorMask); setWireframe(s.wireframe); setDefaultFilter(s.defaultFilter); setDefaultMipmapFilter(s.defaultMipmapFilter, s.defaultMipmapSharpness); } void Graphics::restoreStateChecked(const DisplayState &s) { const DisplayState &cur = states.back(); if (s.color != cur.color) setColor(s.color); setBackgroundColor(s.backgroundColor); if (s.blendMode != cur.blendMode || s.blendAlphaMode != cur.blendAlphaMode) setBlendMode(s.blendMode, s.blendAlphaMode); // These are just simple assignments. setLineWidth(s.lineWidth); setLineStyle(s.lineStyle); setLineJoin(s.lineJoin); if (s.pointSize != cur.pointSize) setPointSize(s.pointSize); if (s.scissor != cur.scissor || (s.scissor && !(s.scissorRect == cur.scissorRect))) { if (s.scissor) setScissor(s.scissorRect); else setScissor(); } if (s.stencilCompare != cur.stencilCompare || s.stencilTestValue != cur.stencilTestValue) setStencilTest(s.stencilCompare, s.stencilTestValue); setFont(s.font.get()); setShader(s.shader.get()); bool canvaseschanged = s.canvases.size() != cur.canvases.size(); if (!canvaseschanged) { for (size_t i = 0; i < s.canvases.size() && i < cur.canvases.size(); i++) { if (s.canvases[i].get() != cur.canvases[i].get()) { canvaseschanged = true; break; } } } if (canvaseschanged) setCanvas(s.canvases); if (s.colorMask != cur.colorMask) setColorMask(s.colorMask); if (s.wireframe != cur.wireframe) setWireframe(s.wireframe); setDefaultFilter(s.defaultFilter); setDefaultMipmapFilter(s.defaultMipmapFilter, s.defaultMipmapSharpness); } Colorf Graphics::getColor() const { return states.back().color; } void Graphics::setBackgroundColor(Colorf c) { states.back().backgroundColor = c; } Colorf Graphics::getBackgroundColor() const { return states.back().backgroundColor; } void Graphics::checkSetDefaultFont() { // We don't create or set the default Font if an existing font is in use. if (states.back().font.get() != nullptr) return; // Create a new default font if we don't have one yet. if (!defaultFont.get()) { auto fontmodule = Module::getInstance(M_FONT); if (!fontmodule) throw love::Exception("Font module has not been loaded."); auto hinting = font::TrueTypeRasterizer::HINTING_NORMAL; StrongRef r(fontmodule->newTrueTypeRasterizer(12, hinting), Acquire::NORETAIN); defaultFont.set(newFont(r.get()), Acquire::NORETAIN); } states.back().font.set(defaultFont.get()); } void Graphics::setFont(love::graphics::Font *font) { // We don't need to set a default font here if null is passed in, since we // only care about the default font in getFont and print. DisplayState &state = states.back(); state.font.set(font); } love::graphics::Font *Graphics::getFont() { checkSetDefaultFont(); return states.back().font.get(); } void Graphics::setShader(love::graphics::Shader *shader) { if (shader == nullptr) return setShader(); flushStreamDraws(); shader->attach(); states.back().shader.set(shader); } void Graphics::setShader() { flushStreamDraws(); Shader::attachDefault(); states.back().shader.set(nullptr); } love::graphics::Shader *Graphics::getShader() const { return states.back().shader.get(); } void Graphics::setCanvas(Canvas *canvas) { if (canvas == nullptr) return setCanvas(); std::vector canvases = {canvas}; setCanvas(canvases); } void Graphics::setCanvas(const std::vector> &canvases) { std::vector canvaslist; canvaslist.reserve(canvases.size()); for (const StrongRef &c : canvases) canvaslist.push_back(c.get()); return setCanvas(canvaslist); } std::vector Graphics::getCanvas() const { std::vector canvases; canvases.reserve(states.back().canvases.size()); for (const StrongRef &c : states.back().canvases) canvases.push_back(c.get()); return canvases; } bool Graphics::isCanvasActive() const { return !states.back().canvases.empty(); } bool Graphics::isCanvasActive(love::graphics::Canvas *canvas) const { for (const auto &c : states.back().canvases) { if (c.get() == canvas) return true; } return false; } void Graphics::intersectScissor(const Rect &rect) { Rect currect = states.back().scissorRect; if (!states.back().scissor) { currect.x = 0; currect.y = 0; currect.w = std::numeric_limits::max(); currect.h = std::numeric_limits::max(); } int x1 = std::max(currect.x, rect.x); int y1 = std::max(currect.y, rect.y); int x2 = std::min(currect.x + currect.w, rect.x + rect.w); int y2 = std::min(currect.y + currect.h, rect.y + rect.h); Rect newrect = {x1, y1, std::max(0, x2 - x1), std::max(0, y2 - y1)}; setScissor(newrect); } bool Graphics::getScissor(Rect &rect) const { const DisplayState &state = states.back(); rect = state.scissorRect; return state.scissor; } void Graphics::getStencilTest(CompareMode &compare, int &value) { const DisplayState &state = states.back(); compare = state.stencilCompare; value = state.stencilTestValue; } Graphics::ColorMask Graphics::getColorMask() const { return states.back().colorMask; } Graphics::BlendMode Graphics::getBlendMode(BlendAlpha &alphamode) const { alphamode = states.back().blendAlphaMode; return states.back().blendMode; } void Graphics::setDefaultFilter(const Texture::Filter &f) { Texture::defaultFilter = f; states.back().defaultFilter = f; } const Texture::Filter &Graphics::getDefaultFilter() const { return Texture::defaultFilter; } void Graphics::setDefaultMipmapFilter(Texture::FilterMode filter, float sharpness) { Texture::defaultMipmapFilter = filter; Texture::defaultMipmapSharpness = sharpness; states.back().defaultMipmapFilter = filter; states.back().defaultMipmapSharpness = sharpness; } void Graphics::getDefaultMipmapFilter(Texture::FilterMode *filter, float *sharpness) const { *filter = Texture::defaultMipmapFilter; *sharpness = Texture::defaultMipmapSharpness; } void Graphics::setLineWidth(float width) { states.back().lineWidth = width; } void Graphics::setLineStyle(Graphics::LineStyle style) { states.back().lineStyle = style; } void Graphics::setLineJoin(Graphics::LineJoin join) { states.back().lineJoin = join; } float Graphics::getLineWidth() const { return states.back().lineWidth; } Graphics::LineStyle Graphics::getLineStyle() const { return states.back().lineStyle; } Graphics::LineJoin Graphics::getLineJoin() const { return states.back().lineJoin; } float Graphics::getPointSize() const { return states.back().pointSize; } bool Graphics::isWireframe() const { return states.back().wireframe; } void Graphics::captureScreenshot(const ScreenshotInfo &info) { pendingScreenshotCallbacks.push_back(info); } Graphics::StreamVertexData Graphics::requestStreamDraw(const StreamDrawRequest &req) { using namespace vertex; StreamBufferState &state = streamBufferState; bool shouldflush = false; bool shouldresize = false; if (req.primitiveMode != state.primitiveMode || req.formats[0] != state.formats[0] || req.formats[1] != state.formats[1] || ((req.indexMode != TriangleIndexMode::NONE) != (state.indexCount > 0)) || req.texture != state.texture || req.textureHandle != state.textureHandle) { shouldflush = true; } int totalvertices = state.vertexCount + req.vertexCount; // We only support uint16 index buffers for now. if (totalvertices > LOVE_UINT16_MAX && req.indexMode != TriangleIndexMode::NONE) shouldflush = true; int reqIndexCount = getIndexCount(req.indexMode, req.vertexCount); size_t reqIndexSize = reqIndexCount * sizeof(uint16); size_t newdatasizes[2] = {0, 0}; size_t buffersizes[3] = {0, 0, 0}; for (int i = 0; i < 2; i++) { if (req.formats[i] == CommonFormat::NONE) continue; size_t stride = getFormatStride(req.formats[i]); size_t datasize = stride * totalvertices; if (state.vbMap[i].data != nullptr && datasize > state.vbMap[i].size) shouldflush = true; if (datasize > state.vb[i]->getSize()) { buffersizes[i] = std::max(datasize, state.vb[i]->getSize() * 2); shouldresize = true; } newdatasizes[i] = stride * req.vertexCount; } if (req.indexMode != TriangleIndexMode::NONE) { size_t datasize = (state.indexCount + reqIndexCount) * sizeof(uint16); if (state.indexBufferMap.data != nullptr && datasize > state.indexBufferMap.size) shouldflush = true; if (datasize > state.indexBuffer->getSize()) { buffersizes[2] = std::max(datasize, state.indexBuffer->getSize() * 2); shouldresize = true; } } if (shouldflush || shouldresize) { flushStreamDraws(); state.primitiveMode = req.primitiveMode; state.formats[0] = req.formats[0]; state.formats[1] = req.formats[1]; state.texture = req.texture; state.textureHandle = req.textureHandle; } if (shouldresize) { for (int i = 0; i < 2; i++) { if (state.vb[i]->getSize() < buffersizes[i]) { delete state.vb[i]; state.vb[i] = newStreamBuffer(BUFFER_VERTEX, buffersizes[i]); } } if (state.indexBuffer->getSize() < buffersizes[2]) { delete state.indexBuffer; state.indexBuffer = newStreamBuffer(BUFFER_INDEX, buffersizes[2]); } } if (req.indexMode != TriangleIndexMode::NONE) { if (state.indexBufferMap.data == nullptr) state.indexBufferMap = state.indexBuffer->map(reqIndexSize); uint16 *indices = (uint16 *) state.indexBufferMap.data; fillIndices(req.indexMode, state.vertexCount, req.vertexCount, indices); state.indexBufferMap.data += reqIndexSize; } StreamVertexData d; for (int i = 0; i < 2; i++) { if (newdatasizes[i] > 0) { if (state.vbMap[i].data == nullptr) state.vbMap[i] = state.vb[i]->map(newdatasizes[i]); d.stream[i] = state.vbMap[i].data; state.vbMap[i].data += newdatasizes[i]; } } state.vertexCount += req.vertexCount; state.indexCount += reqIndexCount; return d; } /** * Drawing **/ void Graphics::print(const std::vector &str, const Matrix4 &m) { checkSetDefaultFont(); DisplayState &state = states.back(); if (state.font.get() != nullptr) state.font->print(this, str, m, state.color); } void Graphics::printf(const std::vector &str, float wrap, Font::AlignMode align, const Matrix4 &m) { checkSetDefaultFont(); DisplayState &state = states.back(); if (state.font.get() != nullptr) state.font->printf(this, str, wrap, align, m, state.color); } void Graphics::draw(Drawable *drawable, const Matrix4 &m) { drawable->draw(this, m); } void Graphics::draw(Texture *texture, Quad *quad, const Matrix4 &m) { texture->drawq(this, quad, m); } /** * Primitives (points, shapes, lines). **/ void Graphics::points(const float *coords, const Colorf *colors, size_t numpoints) { StreamDrawRequest req; req.primitiveMode = vertex::PrimitiveMode::POINTS; req.formats[0] = vertex::CommonFormat::XYf; if (colors) req.formats[1] = vertex::CommonFormat::RGBAub; req.vertexCount = (int) numpoints; StreamVertexData data = requestStreamDraw(req); const Matrix4 &t = getTransform(); t.transform((Vector *) data.stream[0], (const Vector *) coords, req.vertexCount); Color *colordata = (Color *) data.stream[1]; if (colors) { Colorf nc = getColor(); gammaCorrectColor(nc); if (isGammaCorrect()) { for (int i = 0; i < req.vertexCount; i++) { Colorf ci = colors[i]; gammaCorrectColor(ci); ci *= nc; unGammaCorrectColor(ci); colordata[i] = toColor(ci); } } else { for (int i = 0; i < req.vertexCount; i++) colordata[i] = toColor(nc * colors[i]); } } else { Color c = toColor(getColor()); for (int i = 0; i < req.vertexCount; i++) colordata[i] = c; } } int Graphics::calculateEllipsePoints(float rx, float ry) const { int points = (int) sqrtf(((rx + ry) / 2.0f) * 20.0f * (float) pixelScaleStack.back()); return std::max(points, 8); } void Graphics::polyline(const float *coords, size_t count) { float halfwidth = getLineWidth() * 0.5f; LineJoin linejoin = getLineJoin(); LineStyle linestyle = getLineStyle(); float pixelsize = 1.0f / std::max((float) pixelScaleStack.back(), 0.000001f); if (linejoin == LINE_JOIN_NONE) { NoneJoinPolyline line; line.render(coords, count, halfwidth, pixelsize, linestyle == LINE_SMOOTH); line.draw(this); } else if (linejoin == LINE_JOIN_BEVEL) { BevelJoinPolyline line; line.render(coords, count, halfwidth, pixelsize, linestyle == LINE_SMOOTH); line.draw(this); } else if (linejoin == LINE_JOIN_MITER) { MiterJoinPolyline line; line.render(coords, count, halfwidth, pixelsize, linestyle == LINE_SMOOTH); line.draw(this); } } void Graphics::rectangle(DrawMode mode, float x, float y, float w, float h) { float coords[] = {x,y, x,y+h, x+w,y+h, x+w,y, x,y}; polygon(mode, coords, 5 * 2); } void Graphics::rectangle(DrawMode mode, float x, float y, float w, float h, float rx, float ry, int points) { if (rx == 0 || ry == 0) { rectangle(mode, x, y, w, h); return; } // Radius values that are more than half the rectangle's size aren't handled // correctly (for now)... if (w >= 0.02f) rx = std::min(rx, w / 2.0f - 0.01f); if (h >= 0.02f) ry = std::min(ry, h / 2.0f - 0.01f); points = std::max(points / 4, 1); const float half_pi = static_cast(LOVE_M_PI / 2); float angle_shift = half_pi / ((float) points + 1.0f); int num_coords = (points + 2) * 8; float *coords = getScratchBuffer(num_coords + 2); float phi = .0f; for (int i = 0; i <= points + 2; ++i, phi += angle_shift) { coords[2 * i + 0] = x + rx * (1 - cosf(phi)); coords[2 * i + 1] = y + ry * (1 - sinf(phi)); } phi = half_pi; for (int i = points + 2; i <= 2 * (points + 2); ++i, phi += angle_shift) { coords[2 * i + 0] = x + w - rx * (1 + cosf(phi)); coords[2 * i + 1] = y + ry * (1 - sinf(phi)); } phi = 2 * half_pi; for (int i = 2 * (points + 2); i <= 3 * (points + 2); ++i, phi += angle_shift) { coords[2 * i + 0] = x + w - rx * (1 + cosf(phi)); coords[2 * i + 1] = y + h - ry * (1 + sinf(phi)); } phi = 3 * half_pi; for (int i = 3 * (points + 2); i <= 4 * (points + 2); ++i, phi += angle_shift) { coords[2 * i + 0] = x + rx * (1 - cosf(phi)); coords[2 * i + 1] = y + h - ry * (1 + sinf(phi)); } coords[num_coords + 0] = coords[0]; coords[num_coords + 1] = coords[1]; polygon(mode, coords, num_coords + 2); } void Graphics::rectangle(DrawMode mode, float x, float y, float w, float h, float rx, float ry) { rectangle(mode, x, y, w, h, rx, ry, calculateEllipsePoints(rx, ry)); } void Graphics::circle(DrawMode mode, float x, float y, float radius, int points) { ellipse(mode, x, y, radius, radius, points); } void Graphics::circle(DrawMode mode, float x, float y, float radius) { ellipse(mode, x, y, radius, radius); } void Graphics::ellipse(DrawMode mode, float x, float y, float a, float b, int points) { float two_pi = (float) (LOVE_M_PI * 2); if (points <= 0) points = 1; float angle_shift = (two_pi / points); float phi = .0f; float *coords = getScratchBuffer(2 * (points + 1)); for (int i = 0; i < points; ++i, phi += angle_shift) { coords[2*i+0] = x + a * cosf(phi); coords[2*i+1] = y + b * sinf(phi); } coords[2*points+0] = coords[0]; coords[2*points+1] = coords[1]; polygon(mode, coords, (points + 1) * 2); } void Graphics::ellipse(DrawMode mode, float x, float y, float a, float b) { ellipse(mode, x, y, a, b, calculateEllipsePoints(a, b)); } void Graphics::arc(DrawMode drawmode, ArcMode arcmode, float x, float y, float radius, float angle1, float angle2, int points) { // Nothing to display with no points or equal angles. (Or is there with line mode?) if (points <= 0 || angle1 == angle2) return; // Oh, you want to draw a circle? if (fabs(angle1 - angle2) >= 2.0f * (float) LOVE_M_PI) { circle(drawmode, x, y, radius, points); return; } float angle_shift = (angle2 - angle1) / points; // Bail on precision issues. if (angle_shift == 0.0) return; // Prevent the connecting line from being drawn if a closed line arc has a // small angle. Avoids some visual issues when connected lines are at sharp // angles, due to the miter line join drawing code. if (drawmode == DRAW_LINE && arcmode == ARC_CLOSED && fabsf(angle1 - angle2) < LOVE_TORAD(4)) arcmode = ARC_OPEN; // Quick fix for the last part of a filled open arc not being drawn (because // polygon(DRAW_FILL, ...) doesn't work without a closed loop of vertices.) if (drawmode == DRAW_FILL && arcmode == ARC_OPEN) arcmode = ARC_CLOSED; float phi = angle1; float *coords = nullptr; int num_coords = 0; const auto createPoints = [&](float *coordinates) { for (int i = 0; i <= points; ++i, phi += angle_shift) { coordinates[2 * i + 0] = x + radius * cosf(phi); coordinates[2 * i + 1] = y + radius * sinf(phi); } }; if (arcmode == ARC_PIE) { num_coords = (points + 3) * 2; coords = getScratchBuffer(num_coords); coords[0] = coords[num_coords - 2] = x; coords[1] = coords[num_coords - 1] = y; createPoints(coords + 2); } else if (arcmode == ARC_OPEN) { num_coords = (points + 1) * 2; coords = getScratchBuffer(num_coords); createPoints(coords); } else // ARC_CLOSED { num_coords = (points + 2) * 2; coords = getScratchBuffer(num_coords); createPoints(coords); // Connect the ends of the arc. coords[num_coords - 2] = coords[0]; coords[num_coords - 1] = coords[1]; } polygon(drawmode, coords, num_coords); } void Graphics::arc(DrawMode drawmode, ArcMode arcmode, float x, float y, float radius, float angle1, float angle2) { float points = (float) calculateEllipsePoints(radius, radius); // The amount of points is based on the fraction of the circle created by the arc. float angle = fabsf(angle1 - angle2); if (angle < 2.0f * (float) LOVE_M_PI) points *= angle / (2.0f * (float) LOVE_M_PI); arc(drawmode, arcmode, x, y, radius, angle1, angle2, (int) (points + 0.5f)); } /// @param mode the draw mode /// @param coords the coordinate array /// @param count the number of coordinates/size of the array void Graphics::polygon(DrawMode mode, const float *coords, size_t count) { // coords is an array of a closed loop of vertices, i.e. // coords[count-2] = coords[0], coords[count-1] = coords[1] if (mode == DRAW_LINE) { polyline(coords, count); } else { StreamDrawRequest req; req.formats[0] = vertex::CommonFormat::XYf; req.formats[1] = vertex::CommonFormat::RGBAub; req.indexMode = vertex::TriangleIndexMode::FAN; req.vertexCount = (int)count/2 - 1; StreamVertexData data = requestStreamDraw(req); const Matrix4 &t = getTransform(); t.transform((Vector *) data.stream[0], (const Vector *) coords, req.vertexCount); Color c = toColor(getColor()); Color *colordata = (Color *) data.stream[1]; for (int i = 0; i < req.vertexCount; i++) colordata[i] = c; } } void Graphics::push(StackType type) { if (stackTypeStack.size() == MAX_USER_STACK_DEPTH) throw Exception("Maximum stack depth reached (more pushes than pops?)"); pushTransform(); pixelScaleStack.push_back(pixelScaleStack.back()); if (type == STACK_ALL) states.push_back(states.back()); stackTypeStack.push_back(type); } void Graphics::pop() { if (stackTypeStack.size() < 1) throw Exception("Minimum stack depth reached (more pops than pushes?)"); popTransform(); pixelScaleStack.pop_back(); if (stackTypeStack.back() == STACK_ALL) { DisplayState &newstate = states[states.size() - 2]; restoreStateChecked(newstate); // The last two states in the stack should be equal now. states.pop_back(); } stackTypeStack.pop_back(); } /** * Transform and stack functions. **/ const Matrix4 &Graphics::getTransform() const { return transformStack.back(); } const Matrix4 &Graphics::getProjection() const { return projectionMatrix; } void Graphics::pushTransform() { transformStack.push_back(transformStack.back()); } void Graphics::pushIdentityTransform() { transformStack.push_back(Matrix4()); } void Graphics::popTransform() { transformStack.pop_back(); } void Graphics::rotate(float r) { transformStack.back().rotate(r); } void Graphics::scale(float x, float y) { transformStack.back().scale(x, y); pixelScaleStack.back() *= (fabs(x) + fabs(y)) / 2.0; } void Graphics::translate(float x, float y) { transformStack.back().translate(x, y); } void Graphics::shear(float kx, float ky) { transformStack.back().shear(kx, ky); } void Graphics::origin() { transformStack.back().setIdentity(); pixelScaleStack.back() = 1; } void Graphics::applyTransform(love::math::Transform *transform) { Matrix4 &m = transformStack.back(); m *= transform->getMatrix(); float sx, sy; m.getApproximateScale(sx, sy); pixelScaleStack.back() = (sx + sy) / 2.0; } void Graphics::replaceTransform(love::math::Transform *transform) { const Matrix4 &m = transform->getMatrix(); transformStack.back() = m; float sx, sy; m.getApproximateScale(sx, sy); pixelScaleStack.back() = (sx + sy) / 2.0; } Vector Graphics::transformPoint(Vector point) { Vector p; transformStack.back().transform(&p, &point, 1); return p; } Vector Graphics::inverseTransformPoint(Vector point) { Vector p; // TODO: We should probably cache the inverse transform so we don't have to // re-calculate it every time this is called. transformStack.back().inverse().transform(&p, &point, 1); return p; } const Shader::ShaderSource &Graphics::getCurrentDefaultShaderCode() const { return defaultShaderCode[getShaderLanguageTarget()][isGammaCorrect() ? 1 : 0]; } /** * Constants. **/ bool Graphics::getConstant(const char *in, DrawMode &out) { return drawModes.find(in, out); } bool Graphics::getConstant(DrawMode in, const char *&out) { return drawModes.find(in, out); } bool Graphics::getConstant(const char *in, ArcMode &out) { return arcModes.find(in, out); } bool Graphics::getConstant(ArcMode in, const char *&out) { return arcModes.find(in, out); } bool Graphics::getConstant(const char *in, BlendMode &out) { return blendModes.find(in, out); } bool Graphics::getConstant(BlendMode in, const char *&out) { return blendModes.find(in, out); } bool Graphics::getConstant(const char *in, BlendAlpha &out) { return blendAlphaModes.find(in, out); } bool Graphics::getConstant(BlendAlpha in, const char *&out) { return blendAlphaModes.find(in, out); } bool Graphics::getConstant(const char *in, LineStyle &out) { return lineStyles.find(in, out); } bool Graphics::getConstant(LineStyle in, const char *&out) { return lineStyles.find(in, out); } bool Graphics::getConstant(const char *in, LineJoin &out) { return lineJoins.find(in, out); } bool Graphics::getConstant(LineJoin in, const char *&out) { return lineJoins.find(in, out); } bool Graphics::getConstant(const char *in, StencilAction &out) { return stencilActions.find(in, out); } bool Graphics::getConstant(StencilAction in, const char *&out) { return stencilActions.find(in, out); } bool Graphics::getConstant(const char *in, CompareMode &out) { return compareModes.find(in, out); } bool Graphics::getConstant(CompareMode in, const char *&out) { return compareModes.find(in, out); } bool Graphics::getConstant(const char *in, Feature &out) { return features.find(in, out); } bool Graphics::getConstant(Feature in, const char *&out) { return features.find(in, out); } bool Graphics::getConstant(const char *in, SystemLimit &out) { return systemLimits.find(in, out); } bool Graphics::getConstant(SystemLimit in, const char *&out) { return systemLimits.find(in, out); } bool Graphics::getConstant(const char *in, StackType &out) { return stackTypes.find(in, out); } bool Graphics::getConstant(StackType in, const char *&out) { return stackTypes.find(in, out); } StringMap::Entry Graphics::drawModeEntries[] = { { "line", DRAW_LINE }, { "fill", DRAW_FILL }, }; StringMap Graphics::drawModes(Graphics::drawModeEntries, sizeof(Graphics::drawModeEntries)); StringMap::Entry Graphics::arcModeEntries[] = { { "open", ARC_OPEN }, { "closed", ARC_CLOSED }, { "pie", ARC_PIE }, }; StringMap Graphics::arcModes(Graphics::arcModeEntries, sizeof(Graphics::arcModeEntries)); StringMap::Entry Graphics::blendModeEntries[] = { { "alpha", BLEND_ALPHA }, { "add", BLEND_ADD }, { "subtract", BLEND_SUBTRACT }, { "multiply", BLEND_MULTIPLY }, { "lighten", BLEND_LIGHTEN }, { "darken", BLEND_DARKEN }, { "screen", BLEND_SCREEN }, { "replace", BLEND_REPLACE }, { "none", BLEND_NONE }, }; StringMap Graphics::blendModes(Graphics::blendModeEntries, sizeof(Graphics::blendModeEntries)); StringMap::Entry Graphics::blendAlphaEntries[] = { { "alphamultiply", BLENDALPHA_MULTIPLY }, { "premultiplied", BLENDALPHA_PREMULTIPLIED }, }; StringMap Graphics::blendAlphaModes(Graphics::blendAlphaEntries, sizeof(Graphics::blendAlphaEntries)); StringMap::Entry Graphics::lineStyleEntries[] = { { "smooth", LINE_SMOOTH }, { "rough", LINE_ROUGH } }; StringMap Graphics::lineStyles(Graphics::lineStyleEntries, sizeof(Graphics::lineStyleEntries)); StringMap::Entry Graphics::lineJoinEntries[] = { { "none", LINE_JOIN_NONE }, { "miter", LINE_JOIN_MITER }, { "bevel", LINE_JOIN_BEVEL } }; StringMap Graphics::lineJoins(Graphics::lineJoinEntries, sizeof(Graphics::lineJoinEntries)); StringMap::Entry Graphics::stencilActionEntries[] = { { "replace", STENCIL_REPLACE }, { "increment", STENCIL_INCREMENT }, { "decrement", STENCIL_DECREMENT }, { "incrementwrap", STENCIL_INCREMENT_WRAP }, { "decrementwrap", STENCIL_DECREMENT_WRAP }, { "invert", STENCIL_INVERT }, }; StringMap Graphics::stencilActions(Graphics::stencilActionEntries, sizeof(Graphics::stencilActionEntries)); StringMap::Entry Graphics::compareModeEntries[] = { { "less", COMPARE_LESS }, { "lequal", COMPARE_LEQUAL }, { "equal", COMPARE_EQUAL }, { "gequal", COMPARE_GEQUAL }, { "greater", COMPARE_GREATER }, { "notequal", COMPARE_NOTEQUAL }, { "always", COMPARE_ALWAYS }, }; StringMap Graphics::compareModes(Graphics::compareModeEntries, sizeof(Graphics::compareModeEntries)); StringMap::Entry Graphics::featureEntries[] = { { "multicanvasformats", FEATURE_MULTI_CANVAS_FORMATS }, { "clampzero", FEATURE_CLAMP_ZERO }, { "lighten", FEATURE_LIGHTEN }, { "fullnpot", FEATURE_FULL_NPOT }, { "pixelshaderhighp", FEATURE_PIXEL_SHADER_HIGHP }, { "glsl3", FEATURE_GLSL3 }, { "instancing", FEATURE_INSTANCING }, }; StringMap Graphics::features(Graphics::featureEntries, sizeof(Graphics::featureEntries)); StringMap::Entry Graphics::systemLimitEntries[] = { { "pointsize", LIMIT_POINT_SIZE }, { "texturesize", LIMIT_TEXTURE_SIZE }, { "multicanvas", LIMIT_MULTI_CANVAS }, { "canvasmsaa", LIMIT_CANVAS_MSAA }, { "anisotropy", LIMIT_ANISOTROPY }, }; StringMap Graphics::systemLimits(Graphics::systemLimitEntries, sizeof(Graphics::systemLimitEntries)); StringMap::Entry Graphics::stackTypeEntries[] = { { "all", STACK_ALL }, { "transform", STACK_TRANSFORM }, }; StringMap Graphics::stackTypes(Graphics::stackTypeEntries, sizeof(Graphics::stackTypeEntries)); } // graphics } // love