Matrix.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /**
  2. * Copyright (c) 2006-2016 LOVE Development Team
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. *
  8. * Permission is granted to anyone to use this software for any purpose,
  9. * including commercial applications, and to alter it and redistribute it
  10. * freely, subject to the following restrictions:
  11. *
  12. * 1. The origin of this software must not be misrepresented; you must not
  13. * claim that you wrote the original software. If you use this software
  14. * in a product, an acknowledgment in the product documentation would be
  15. * appreciated but is not required.
  16. * 2. Altered source versions must be plainly marked as such, and must not be
  17. * misrepresented as being the original software.
  18. * 3. This notice may not be removed or altered from any source distribution.
  19. **/
  20. #include "Matrix.h"
  21. #include "common/config.h"
  22. // STD
  23. #include <cstring> // memcpy
  24. #include <cmath>
  25. #if defined(LOVE_SIMD_SSE)
  26. #include <xmmintrin.h>
  27. #endif
  28. namespace love
  29. {
  30. // | e0 e4 e8 e12 |
  31. // | e1 e5 e9 e13 |
  32. // | e2 e6 e10 e14 |
  33. // | e3 e7 e11 e15 |
  34. // | e0 e4 e8 e12 |
  35. // | e1 e5 e9 e13 |
  36. // | e2 e6 e10 e14 |
  37. // | e3 e7 e11 e15 |
  38. void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, float t[16])
  39. {
  40. // NOTE: in my testing with ARM NEON instructions (on an iPhone 6 with arm64)
  41. // it performed slightly worse than the regular add/multiply code. Further
  42. // investigation would be useful.
  43. #if defined(LOVE_SIMD_SSE)
  44. // We can't guarantee 16-bit alignment (e.g. for heap-allocated Matrix4
  45. // objects) so we use unaligned loads and stores.
  46. __m128 col1 = _mm_loadu_ps(&a.e[0]);
  47. __m128 col2 = _mm_loadu_ps(&a.e[4]);
  48. __m128 col3 = _mm_loadu_ps(&a.e[8]);
  49. __m128 col4 = _mm_loadu_ps(&a.e[12]);
  50. for (int i = 0; i < 4; i++)
  51. {
  52. __m128 brod1 = _mm_set1_ps(b.e[4*i + 0]);
  53. __m128 brod2 = _mm_set1_ps(b.e[4*i + 1]);
  54. __m128 brod3 = _mm_set1_ps(b.e[4*i + 2]);
  55. __m128 brod4 = _mm_set1_ps(b.e[4*i + 3]);
  56. __m128 col = _mm_add_ps(
  57. _mm_add_ps(_mm_mul_ps(brod1, col1), _mm_mul_ps(brod2, col2)),
  58. _mm_add_ps(_mm_mul_ps(brod3, col3), _mm_mul_ps(brod4, col4))
  59. );
  60. _mm_storeu_ps(&t[4*i], col);
  61. }
  62. #else
  63. t[0] = (a.e[0]*b.e[0]) + (a.e[4]*b.e[1]) + (a.e[8]*b.e[2]) + (a.e[12]*b.e[3]);
  64. t[4] = (a.e[0]*b.e[4]) + (a.e[4]*b.e[5]) + (a.e[8]*b.e[6]) + (a.e[12]*b.e[7]);
  65. t[8] = (a.e[0]*b.e[8]) + (a.e[4]*b.e[9]) + (a.e[8]*b.e[10]) + (a.e[12]*b.e[11]);
  66. t[12] = (a.e[0]*b.e[12]) + (a.e[4]*b.e[13]) + (a.e[8]*b.e[14]) + (a.e[12]*b.e[15]);
  67. t[1] = (a.e[1]*b.e[0]) + (a.e[5]*b.e[1]) + (a.e[9]*b.e[2]) + (a.e[13]*b.e[3]);
  68. t[5] = (a.e[1]*b.e[4]) + (a.e[5]*b.e[5]) + (a.e[9]*b.e[6]) + (a.e[13]*b.e[7]);
  69. t[9] = (a.e[1]*b.e[8]) + (a.e[5]*b.e[9]) + (a.e[9]*b.e[10]) + (a.e[13]*b.e[11]);
  70. t[13] = (a.e[1]*b.e[12]) + (a.e[5]*b.e[13]) + (a.e[9]*b.e[14]) + (a.e[13]*b.e[15]);
  71. t[2] = (a.e[2]*b.e[0]) + (a.e[6]*b.e[1]) + (a.e[10]*b.e[2]) + (a.e[14]*b.e[3]);
  72. t[6] = (a.e[2]*b.e[4]) + (a.e[6]*b.e[5]) + (a.e[10]*b.e[6]) + (a.e[14]*b.e[7]);
  73. t[10] = (a.e[2]*b.e[8]) + (a.e[6]*b.e[9]) + (a.e[10]*b.e[10]) + (a.e[14]*b.e[11]);
  74. t[14] = (a.e[2]*b.e[12]) + (a.e[6]*b.e[13]) + (a.e[10]*b.e[14]) + (a.e[14]*b.e[15]);
  75. t[3] = (a.e[3]*b.e[0]) + (a.e[7]*b.e[1]) + (a.e[11]*b.e[2]) + (a.e[15]*b.e[3]);
  76. t[7] = (a.e[3]*b.e[4]) + (a.e[7]*b.e[5]) + (a.e[11]*b.e[6]) + (a.e[15]*b.e[7]);
  77. t[11] = (a.e[3]*b.e[8]) + (a.e[7]*b.e[9]) + (a.e[11]*b.e[10]) + (a.e[15]*b.e[11]);
  78. t[15] = (a.e[3]*b.e[12]) + (a.e[7]*b.e[13]) + (a.e[11]*b.e[14]) + (a.e[15]*b.e[15]);
  79. #endif
  80. }
  81. void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, Matrix4 &t)
  82. {
  83. multiply(a, b, t.e);
  84. }
  85. // | e0 e4 e8 e12 |
  86. // | e1 e5 e9 e13 |
  87. // | e2 e6 e10 e14 |
  88. // | e3 e7 e11 e15 |
  89. Matrix4::Matrix4()
  90. {
  91. setIdentity();
  92. }
  93. Matrix4::Matrix4(const float elements[16])
  94. {
  95. memcpy(e, elements, sizeof(float) * 16);
  96. }
  97. Matrix4::Matrix4(float t00, float t10, float t01, float t11, float x, float y)
  98. {
  99. setRawTransformation(t00, t10, t01, t11, x, y);
  100. }
  101. Matrix4::Matrix4(const Matrix4 &a, const Matrix4 &b)
  102. {
  103. multiply(a, b, e);
  104. }
  105. Matrix4::Matrix4(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  106. {
  107. setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
  108. }
  109. Matrix4 Matrix4::operator * (const Matrix4 &m) const
  110. {
  111. return Matrix4(*this, m);
  112. }
  113. void Matrix4::operator *= (const Matrix4 &m)
  114. {
  115. float t[16];
  116. multiply(*this, m, t);
  117. memcpy(this->e, t, sizeof(float)*16);
  118. }
  119. const float *Matrix4::getElements() const
  120. {
  121. return e;
  122. }
  123. void Matrix4::setIdentity()
  124. {
  125. memset(e, 0, sizeof(float)*16);
  126. e[15] = e[10] = e[5] = e[0] = 1;
  127. }
  128. void Matrix4::setTranslation(float x, float y)
  129. {
  130. setIdentity();
  131. e[12] = x;
  132. e[13] = y;
  133. }
  134. void Matrix4::setRotation(float rad)
  135. {
  136. setIdentity();
  137. float c = cosf(rad), s = sinf(rad);
  138. e[0] = c;
  139. e[4] = -s;
  140. e[1] = s;
  141. e[5] = c;
  142. }
  143. void Matrix4::setScale(float sx, float sy)
  144. {
  145. setIdentity();
  146. e[0] = sx;
  147. e[5] = sy;
  148. }
  149. void Matrix4::setShear(float kx, float ky)
  150. {
  151. setIdentity();
  152. e[1] = ky;
  153. e[4] = kx;
  154. }
  155. void Matrix4::getApproximateScale(float &sx, float &sy) const
  156. {
  157. sx = sqrtf(e[0] * e[0] + e[4] * e[4]);
  158. sy = sqrtf(e[1] * e[1] + e[5] * e[5]);
  159. }
  160. void Matrix4::setRawTransformation(float t00, float t10, float t01, float t11, float x, float y)
  161. {
  162. memset(e, 0, sizeof(float)*16); // zero out matrix
  163. e[10] = e[15] = 1.0f;
  164. e[0] = t00;
  165. e[1] = t10;
  166. e[4] = t01;
  167. e[5] = t11;
  168. e[12] = x;
  169. e[13] = y;
  170. }
  171. void Matrix4::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  172. {
  173. memset(e, 0, sizeof(float)*16); // zero out matrix
  174. float c = cosf(angle), s = sinf(angle);
  175. // matrix multiplication carried out on paper:
  176. // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
  177. // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
  178. // | 1 | | 1 | | 1 | | 1 | | 1 |
  179. // | 1| | 1| | 1| | 1| | 1 |
  180. // move rotate scale skew origin
  181. e[10] = e[15] = 1.0f;
  182. e[0] = c * sx - ky * s * sy; // = a
  183. e[1] = s * sx + ky * c * sy; // = b
  184. e[4] = kx * c * sx - s * sy; // = c
  185. e[5] = kx * s * sx + c * sy; // = d
  186. e[12] = x - ox * e[0] - oy * e[4];
  187. e[13] = y - ox * e[1] - oy * e[5];
  188. }
  189. void Matrix4::translate(float x, float y)
  190. {
  191. Matrix4 t;
  192. t.setTranslation(x, y);
  193. this->operator *=(t);
  194. }
  195. void Matrix4::rotate(float rad)
  196. {
  197. Matrix4 t;
  198. t.setRotation(rad);
  199. this->operator *=(t);
  200. }
  201. void Matrix4::scale(float sx, float sy)
  202. {
  203. Matrix4 t;
  204. t.setScale(sx, sy);
  205. this->operator *=(t);
  206. }
  207. void Matrix4::shear(float kx, float ky)
  208. {
  209. Matrix4 t;
  210. t.setShear(kx,ky);
  211. this->operator *=(t);
  212. }
  213. Matrix4 Matrix4::inverse() const
  214. {
  215. Matrix4 inv;
  216. inv.e[0] = e[5] * e[10] * e[15] -
  217. e[5] * e[11] * e[14] -
  218. e[9] * e[6] * e[15] +
  219. e[9] * e[7] * e[14] +
  220. e[13] * e[6] * e[11] -
  221. e[13] * e[7] * e[10];
  222. inv.e[4] = -e[4] * e[10] * e[15] +
  223. e[4] * e[11] * e[14] +
  224. e[8] * e[6] * e[15] -
  225. e[8] * e[7] * e[14] -
  226. e[12] * e[6] * e[11] +
  227. e[12] * e[7] * e[10];
  228. inv.e[8] = e[4] * e[9] * e[15] -
  229. e[4] * e[11] * e[13] -
  230. e[8] * e[5] * e[15] +
  231. e[8] * e[7] * e[13] +
  232. e[12] * e[5] * e[11] -
  233. e[12] * e[7] * e[9];
  234. inv.e[12] = -e[4] * e[9] * e[14] +
  235. e[4] * e[10] * e[13] +
  236. e[8] * e[5] * e[14] -
  237. e[8] * e[6] * e[13] -
  238. e[12] * e[5] * e[10] +
  239. e[12] * e[6] * e[9];
  240. inv.e[1] = -e[1] * e[10] * e[15] +
  241. e[1] * e[11] * e[14] +
  242. e[9] * e[2] * e[15] -
  243. e[9] * e[3] * e[14] -
  244. e[13] * e[2] * e[11] +
  245. e[13] * e[3] * e[10];
  246. inv.e[5] = e[0] * e[10] * e[15] -
  247. e[0] * e[11] * e[14] -
  248. e[8] * e[2] * e[15] +
  249. e[8] * e[3] * e[14] +
  250. e[12] * e[2] * e[11] -
  251. e[12] * e[3] * e[10];
  252. inv.e[9] = -e[0] * e[9] * e[15] +
  253. e[0] * e[11] * e[13] +
  254. e[8] * e[1] * e[15] -
  255. e[8] * e[3] * e[13] -
  256. e[12] * e[1] * e[11] +
  257. e[12] * e[3] * e[9];
  258. inv.e[13] = e[0] * e[9] * e[14] -
  259. e[0] * e[10] * e[13] -
  260. e[8] * e[1] * e[14] +
  261. e[8] * e[2] * e[13] +
  262. e[12] * e[1] * e[10] -
  263. e[12] * e[2] * e[9];
  264. inv.e[2] = e[1] * e[6] * e[15] -
  265. e[1] * e[7] * e[14] -
  266. e[5] * e[2] * e[15] +
  267. e[5] * e[3] * e[14] +
  268. e[13] * e[2] * e[7] -
  269. e[13] * e[3] * e[6];
  270. inv.e[6] = -e[0] * e[6] * e[15] +
  271. e[0] * e[7] * e[14] +
  272. e[4] * e[2] * e[15] -
  273. e[4] * e[3] * e[14] -
  274. e[12] * e[2] * e[7] +
  275. e[12] * e[3] * e[6];
  276. inv.e[10] = e[0] * e[5] * e[15] -
  277. e[0] * e[7] * e[13] -
  278. e[4] * e[1] * e[15] +
  279. e[4] * e[3] * e[13] +
  280. e[12] * e[1] * e[7] -
  281. e[12] * e[3] * e[5];
  282. inv.e[14] = -e[0] * e[5] * e[14] +
  283. e[0] * e[6] * e[13] +
  284. e[4] * e[1] * e[14] -
  285. e[4] * e[2] * e[13] -
  286. e[12] * e[1] * e[6] +
  287. e[12] * e[2] * e[5];
  288. inv.e[3] = -e[1] * e[6] * e[11] +
  289. e[1] * e[7] * e[10] +
  290. e[5] * e[2] * e[11] -
  291. e[5] * e[3] * e[10] -
  292. e[9] * e[2] * e[7] +
  293. e[9] * e[3] * e[6];
  294. inv.e[7] = e[0] * e[6] * e[11] -
  295. e[0] * e[7] * e[10] -
  296. e[4] * e[2] * e[11] +
  297. e[4] * e[3] * e[10] +
  298. e[8] * e[2] * e[7] -
  299. e[8] * e[3] * e[6];
  300. inv.e[11] = -e[0] * e[5] * e[11] +
  301. e[0] * e[7] * e[9] +
  302. e[4] * e[1] * e[11] -
  303. e[4] * e[3] * e[9] -
  304. e[8] * e[1] * e[7] +
  305. e[8] * e[3] * e[5];
  306. inv.e[15] = e[0] * e[5] * e[10] -
  307. e[0] * e[6] * e[9] -
  308. e[4] * e[1] * e[10] +
  309. e[4] * e[2] * e[9] +
  310. e[8] * e[1] * e[6] -
  311. e[8] * e[2] * e[5];
  312. float det = e[0] * inv.e[0] + e[1] * inv.e[4] + e[2] * inv.e[8] + e[3] * inv.e[12];
  313. float invdet = 1.0f / det;
  314. for (int i = 0; i < 16; i++)
  315. inv.e[i] *= invdet;
  316. return inv;
  317. }
  318. Matrix4 Matrix4::ortho(float left, float right, float bottom, float top)
  319. {
  320. Matrix4 m;
  321. m.e[0] = 2.0f / (right - left);
  322. m.e[5] = 2.0f / (top - bottom);
  323. m.e[10] = -1.0;
  324. m.e[12] = -(right + left) / (right - left);
  325. m.e[13] = -(top + bottom) / (top - bottom);
  326. return m;
  327. }
  328. /**
  329. * | e0 e3 e6 |
  330. * | e1 e4 e7 |
  331. * | e2 e5 e8 |
  332. **/
  333. Matrix3::Matrix3()
  334. {
  335. setIdentity();
  336. }
  337. Matrix3::Matrix3(const Matrix4 &mat4)
  338. {
  339. const float *mat4elems = mat4.getElements();
  340. // Column 0.
  341. e[0] = mat4elems[0];
  342. e[1] = mat4elems[1];
  343. e[2] = mat4elems[2];
  344. // Column 1.
  345. e[3] = mat4elems[4];
  346. e[4] = mat4elems[5];
  347. e[5] = mat4elems[6];
  348. // Column 2.
  349. e[6] = mat4elems[8];
  350. e[7] = mat4elems[9];
  351. e[8] = mat4elems[10];
  352. }
  353. Matrix3::Matrix3(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  354. {
  355. setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
  356. }
  357. Matrix3::~Matrix3()
  358. {
  359. }
  360. void Matrix3::setIdentity()
  361. {
  362. memset(e, 0, sizeof(float) * 9);
  363. e[8] = e[4] = e[0] = 1.0f;
  364. }
  365. Matrix3 Matrix3::operator * (const love::Matrix3 &m) const
  366. {
  367. Matrix3 t;
  368. t.e[0] = (e[0]*m.e[0]) + (e[3]*m.e[1]) + (e[6]*m.e[2]);
  369. t.e[3] = (e[0]*m.e[3]) + (e[3]*m.e[4]) + (e[6]*m.e[5]);
  370. t.e[6] = (e[0]*m.e[6]) + (e[3]*m.e[7]) + (e[6]*m.e[8]);
  371. t.e[1] = (e[1]*m.e[0]) + (e[4]*m.e[1]) + (e[7]*m.e[2]);
  372. t.e[4] = (e[1]*m.e[3]) + (e[4]*m.e[4]) + (e[7]*m.e[5]);
  373. t.e[7] = (e[1]*m.e[6]) + (e[4]*m.e[7]) + (e[7]*m.e[8]);
  374. t.e[2] = (e[2]*m.e[0]) + (e[5]*m.e[1]) + (e[8]*m.e[2]);
  375. t.e[5] = (e[2]*m.e[3]) + (e[5]*m.e[4]) + (e[8]*m.e[5]);
  376. t.e[8] = (e[2]*m.e[6]) + (e[5]*m.e[7]) + (e[8]*m.e[8]);
  377. return t;
  378. }
  379. void Matrix3::operator *= (const Matrix3 &m)
  380. {
  381. Matrix3 t = (*this) * m;
  382. memcpy(e, t.e, sizeof(float) * 9);
  383. }
  384. const float *Matrix3::getElements() const
  385. {
  386. return e;
  387. }
  388. Matrix3 Matrix3::transposedInverse() const
  389. {
  390. // e0 e3 e6
  391. // e1 e4 e7
  392. // e2 e5 e8
  393. float det = e[0] * (e[4]*e[8] - e[7]*e[5])
  394. - e[1] * (e[3]*e[8] - e[5]*e[6])
  395. + e[2] * (e[3]*e[7] - e[4]*e[6]);
  396. float invdet = 1.0f / det;
  397. Matrix3 m;
  398. m.e[0] = invdet * (e[4]*e[8] - e[7]*e[5]);
  399. m.e[3] = -invdet * (e[1]*e[8] - e[2]*e[7]);
  400. m.e[6] = invdet * (e[1]*e[5] - e[2]*e[4]);
  401. m.e[1] = -invdet * (e[3]*e[8] - e[5]*e[6]);
  402. m.e[4] = invdet * (e[0]*e[8] - e[2]*e[6]);
  403. m.e[7] = -invdet * (e[0]*e[5] - e[3]*e[2]);
  404. m.e[2] = invdet * (e[3]*e[7] - e[6]*e[4]);
  405. m.e[5] = -invdet * (e[0]*e[7] - e[6]*e[1]);
  406. m.e[8] = invdet * (e[0]*e[4] - e[3]*e[1]);
  407. return m;
  408. }
  409. void Matrix3::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  410. {
  411. float c = cosf(angle), s = sinf(angle);
  412. // matrix multiplication carried out on paper:
  413. // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
  414. // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
  415. // | 1| | 1| | 1| | 1| | 1 |
  416. // move rotate scale skew origin
  417. e[0] = c * sx - ky * s * sy; // = a
  418. e[1] = s * sx + ky * c * sy; // = b
  419. e[3] = kx * c * sx - s * sy; // = c
  420. e[4] = kx * s * sx + c * sy; // = d
  421. e[6] = x - ox * e[0] - oy * e[3];
  422. e[7] = y - ox * e[1] - oy * e[4];
  423. e[2] = e[5] = 0.0f;
  424. e[8] = 1.0f;
  425. }
  426. } // love