123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 |
- /**
- * Copyright (c) 2006-2025 LOVE Development Team
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- **/
- #include "Matrix.h"
- #include "common/config.h"
- // STD
- #include <cstring> // memcpy
- #include <cmath>
- #if defined(LOVE_SIMD_SSE)
- #include <xmmintrin.h>
- #endif
- #if defined(LOVE_SIMD_NEON)
- #include <arm_neon.h>
- #endif
- namespace love
- {
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, float t[16])
- {
- #if defined(LOVE_SIMD_SSE)
- // We can't guarantee 16-bit alignment (e.g. for heap-allocated Matrix4
- // objects) so we use unaligned loads and stores.
- __m128 col1 = _mm_loadu_ps(&a.e[0]);
- __m128 col2 = _mm_loadu_ps(&a.e[4]);
- __m128 col3 = _mm_loadu_ps(&a.e[8]);
- __m128 col4 = _mm_loadu_ps(&a.e[12]);
- for (int i = 0; i < 4; i++)
- {
- __m128 brod1 = _mm_set1_ps(b.e[4*i + 0]);
- __m128 brod2 = _mm_set1_ps(b.e[4*i + 1]);
- __m128 brod3 = _mm_set1_ps(b.e[4*i + 2]);
- __m128 brod4 = _mm_set1_ps(b.e[4*i + 3]);
- __m128 col = _mm_add_ps(
- _mm_add_ps(_mm_mul_ps(brod1, col1), _mm_mul_ps(brod2, col2)),
- _mm_add_ps(_mm_mul_ps(brod3, col3), _mm_mul_ps(brod4, col4))
- );
- _mm_storeu_ps(&t[4*i], col);
- }
- #elif defined(LOVE_SIMD_NEON)
- float32x4_t cola1 = vld1q_f32(&a.e[0]);
- float32x4_t cola2 = vld1q_f32(&a.e[4]);
- float32x4_t cola3 = vld1q_f32(&a.e[8]);
- float32x4_t cola4 = vld1q_f32(&a.e[12]);
- float32x4_t col1 = vmulq_n_f32(cola1, b.e[0]);
- col1 = vmlaq_n_f32(col1, cola2, b.e[1]);
- col1 = vmlaq_n_f32(col1, cola3, b.e[2]);
- col1 = vmlaq_n_f32(col1, cola4, b.e[3]);
- float32x4_t col2 = vmulq_n_f32(cola1, b.e[4]);
- col2 = vmlaq_n_f32(col2, cola2, b.e[5]);
- col2 = vmlaq_n_f32(col2, cola3, b.e[6]);
- col2 = vmlaq_n_f32(col2, cola4, b.e[7]);
- float32x4_t col3 = vmulq_n_f32(cola1, b.e[8]);
- col3 = vmlaq_n_f32(col3, cola2, b.e[9]);
- col3 = vmlaq_n_f32(col3, cola3, b.e[10]);
- col3 = vmlaq_n_f32(col3, cola4, b.e[11]);
- float32x4_t col4 = vmulq_n_f32(cola1, b.e[12]);
- col4 = vmlaq_n_f32(col4, cola2, b.e[13]);
- col4 = vmlaq_n_f32(col4, cola3, b.e[14]);
- col4 = vmlaq_n_f32(col4, cola4, b.e[15]);
- vst1q_f32(&t[0], col1);
- vst1q_f32(&t[4], col2);
- vst1q_f32(&t[8], col3);
- vst1q_f32(&t[12], col4);
- #else
- t[0] = (a.e[0]*b.e[0]) + (a.e[4]*b.e[1]) + (a.e[8]*b.e[2]) + (a.e[12]*b.e[3]);
- t[4] = (a.e[0]*b.e[4]) + (a.e[4]*b.e[5]) + (a.e[8]*b.e[6]) + (a.e[12]*b.e[7]);
- t[8] = (a.e[0]*b.e[8]) + (a.e[4]*b.e[9]) + (a.e[8]*b.e[10]) + (a.e[12]*b.e[11]);
- t[12] = (a.e[0]*b.e[12]) + (a.e[4]*b.e[13]) + (a.e[8]*b.e[14]) + (a.e[12]*b.e[15]);
- t[1] = (a.e[1]*b.e[0]) + (a.e[5]*b.e[1]) + (a.e[9]*b.e[2]) + (a.e[13]*b.e[3]);
- t[5] = (a.e[1]*b.e[4]) + (a.e[5]*b.e[5]) + (a.e[9]*b.e[6]) + (a.e[13]*b.e[7]);
- t[9] = (a.e[1]*b.e[8]) + (a.e[5]*b.e[9]) + (a.e[9]*b.e[10]) + (a.e[13]*b.e[11]);
- t[13] = (a.e[1]*b.e[12]) + (a.e[5]*b.e[13]) + (a.e[9]*b.e[14]) + (a.e[13]*b.e[15]);
- t[2] = (a.e[2]*b.e[0]) + (a.e[6]*b.e[1]) + (a.e[10]*b.e[2]) + (a.e[14]*b.e[3]);
- t[6] = (a.e[2]*b.e[4]) + (a.e[6]*b.e[5]) + (a.e[10]*b.e[6]) + (a.e[14]*b.e[7]);
- t[10] = (a.e[2]*b.e[8]) + (a.e[6]*b.e[9]) + (a.e[10]*b.e[10]) + (a.e[14]*b.e[11]);
- t[14] = (a.e[2]*b.e[12]) + (a.e[6]*b.e[13]) + (a.e[10]*b.e[14]) + (a.e[14]*b.e[15]);
- t[3] = (a.e[3]*b.e[0]) + (a.e[7]*b.e[1]) + (a.e[11]*b.e[2]) + (a.e[15]*b.e[3]);
- t[7] = (a.e[3]*b.e[4]) + (a.e[7]*b.e[5]) + (a.e[11]*b.e[6]) + (a.e[15]*b.e[7]);
- t[11] = (a.e[3]*b.e[8]) + (a.e[7]*b.e[9]) + (a.e[11]*b.e[10]) + (a.e[15]*b.e[11]);
- t[15] = (a.e[3]*b.e[12]) + (a.e[7]*b.e[13]) + (a.e[11]*b.e[14]) + (a.e[15]*b.e[15]);
- #endif
- }
- void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, Matrix4 &t)
- {
- multiply(a, b, t.e);
- }
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- Matrix4::Matrix4()
- {
- setIdentity();
- }
- Matrix4::Matrix4(const float elements[16])
- {
- memcpy(e, elements, sizeof(float) * 16);
- }
-
- Matrix4::Matrix4(float t00, float t10, float t01, float t11, float x, float y)
- {
- setRawTransformation(t00, t10, t01, t11, x, y);
- }
- Matrix4::Matrix4(const Matrix4 &a, const Matrix4 &b)
- {
- multiply(a, b, e);
- }
- Matrix4::Matrix4(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
- {
- setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
- }
- Matrix4 Matrix4::operator * (const Matrix4 &m) const
- {
- return Matrix4(*this, m);
- }
- void Matrix4::operator *= (const Matrix4 &m)
- {
- float t[16];
- multiply(*this, m, t);
- memcpy(this->e, t, sizeof(float)*16);
- }
- const float *Matrix4::getElements() const
- {
- return e;
- }
- void Matrix4::setRow(int r, const Vector4 &v)
- {
- e[0 * 4 + r] = v.x;
- e[1 * 4 + r] = v.y;
- e[2 * 4 + r] = v.z;
- e[3 * 4 + r] = v.w;
- }
- Vector4 Matrix4::getRow(int r) const
- {
- return Vector4(e[0 * 4 + r], e[1 * 4 + r], e[2 * 4 + r], e[3 * 4 + r]);
- }
- void Matrix4::setColumn(int c, const Vector4 &v)
- {
- e[c * 4 + 0] = v.x;
- e[c * 4 + 1] = v.y;
- e[c * 4 + 2] = v.z;
- e[c * 4 + 3] = v.w;
- }
- Vector4 Matrix4::getColumn(int c) const
- {
- return Vector4(e[c * 4 + 0], e[c * 4 + 1], e[c * 4 + 2], e[c * 4 + 3]);
- }
- void Matrix4::setIdentity()
- {
- memset(e, 0, sizeof(float)*16);
- e[15] = e[10] = e[5] = e[0] = 1;
- }
- void Matrix4::setTranslation(float x, float y)
- {
- setIdentity();
- e[12] = x;
- e[13] = y;
- }
- void Matrix4::setRotation(float rad)
- {
- setIdentity();
- float c = cosf(rad), s = sinf(rad);
- e[0] = c;
- e[4] = -s;
- e[1] = s;
- e[5] = c;
- }
- void Matrix4::setScale(float sx, float sy)
- {
- setIdentity();
- e[0] = sx;
- e[5] = sy;
- }
- void Matrix4::setShear(float kx, float ky)
- {
- setIdentity();
- e[1] = ky;
- e[4] = kx;
- }
- void Matrix4::getApproximateScale(float &sx, float &sy) const
- {
- sx = sqrtf(e[0] * e[0] + e[4] * e[4]);
- sy = sqrtf(e[1] * e[1] + e[5] * e[5]);
- }
-
- void Matrix4::setRawTransformation(float t00, float t10, float t01, float t11, float x, float y)
- {
- memset(e, 0, sizeof(float)*16); // zero out matrix
- e[10] = e[15] = 1.0f;
- e[0] = t00;
- e[1] = t10;
- e[4] = t01;
- e[5] = t11;
- e[12] = x;
- e[13] = y;
- }
- void Matrix4::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
- {
- memset(e, 0, sizeof(float)*16); // zero out matrix
- float c = cosf(angle), s = sinf(angle);
- // matrix multiplication carried out on paper:
- // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
- // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
- // | 1 | | 1 | | 1 | | 1 | | 1 |
- // | 1| | 1| | 1| | 1| | 1 |
- // move rotate scale skew origin
- e[10] = e[15] = 1.0f;
- e[0] = c * sx - ky * s * sy; // = a
- e[1] = s * sx + ky * c * sy; // = b
- e[4] = kx * c * sx - s * sy; // = c
- e[5] = kx * s * sx + c * sy; // = d
- e[12] = x - ox * e[0] - oy * e[4];
- e[13] = y - ox * e[1] - oy * e[5];
- }
- void Matrix4::translate(float x, float y)
- {
- Matrix4 t;
- t.setTranslation(x, y);
- this->operator *=(t);
- }
- void Matrix4::rotate(float rad)
- {
- Matrix4 t;
- t.setRotation(rad);
- this->operator *=(t);
- }
- void Matrix4::scale(float sx, float sy)
- {
- Matrix4 t;
- t.setScale(sx, sy);
- this->operator *=(t);
- }
- void Matrix4::shear(float kx, float ky)
- {
- Matrix4 t;
- t.setShear(kx,ky);
- this->operator *=(t);
- }
- bool Matrix4::isAffine2DTransform() const
- {
- return fabsf(e[2] + e[3] + e[6] + e[7] + e[8] + e[9] + e[11] + e[14]) < 0.00001f
- && fabsf(e[10] + e[15] - 2.0f) < 0.00001f;
- }
- Matrix4 Matrix4::inverse() const
- {
- Matrix4 inv;
- inv.e[0] = e[5] * e[10] * e[15] -
- e[5] * e[11] * e[14] -
- e[9] * e[6] * e[15] +
- e[9] * e[7] * e[14] +
- e[13] * e[6] * e[11] -
- e[13] * e[7] * e[10];
- inv.e[4] = -e[4] * e[10] * e[15] +
- e[4] * e[11] * e[14] +
- e[8] * e[6] * e[15] -
- e[8] * e[7] * e[14] -
- e[12] * e[6] * e[11] +
- e[12] * e[7] * e[10];
- inv.e[8] = e[4] * e[9] * e[15] -
- e[4] * e[11] * e[13] -
- e[8] * e[5] * e[15] +
- e[8] * e[7] * e[13] +
- e[12] * e[5] * e[11] -
- e[12] * e[7] * e[9];
- inv.e[12] = -e[4] * e[9] * e[14] +
- e[4] * e[10] * e[13] +
- e[8] * e[5] * e[14] -
- e[8] * e[6] * e[13] -
- e[12] * e[5] * e[10] +
- e[12] * e[6] * e[9];
- inv.e[1] = -e[1] * e[10] * e[15] +
- e[1] * e[11] * e[14] +
- e[9] * e[2] * e[15] -
- e[9] * e[3] * e[14] -
- e[13] * e[2] * e[11] +
- e[13] * e[3] * e[10];
- inv.e[5] = e[0] * e[10] * e[15] -
- e[0] * e[11] * e[14] -
- e[8] * e[2] * e[15] +
- e[8] * e[3] * e[14] +
- e[12] * e[2] * e[11] -
- e[12] * e[3] * e[10];
- inv.e[9] = -e[0] * e[9] * e[15] +
- e[0] * e[11] * e[13] +
- e[8] * e[1] * e[15] -
- e[8] * e[3] * e[13] -
- e[12] * e[1] * e[11] +
- e[12] * e[3] * e[9];
- inv.e[13] = e[0] * e[9] * e[14] -
- e[0] * e[10] * e[13] -
- e[8] * e[1] * e[14] +
- e[8] * e[2] * e[13] +
- e[12] * e[1] * e[10] -
- e[12] * e[2] * e[9];
- inv.e[2] = e[1] * e[6] * e[15] -
- e[1] * e[7] * e[14] -
- e[5] * e[2] * e[15] +
- e[5] * e[3] * e[14] +
- e[13] * e[2] * e[7] -
- e[13] * e[3] * e[6];
- inv.e[6] = -e[0] * e[6] * e[15] +
- e[0] * e[7] * e[14] +
- e[4] * e[2] * e[15] -
- e[4] * e[3] * e[14] -
- e[12] * e[2] * e[7] +
- e[12] * e[3] * e[6];
- inv.e[10] = e[0] * e[5] * e[15] -
- e[0] * e[7] * e[13] -
- e[4] * e[1] * e[15] +
- e[4] * e[3] * e[13] +
- e[12] * e[1] * e[7] -
- e[12] * e[3] * e[5];
- inv.e[14] = -e[0] * e[5] * e[14] +
- e[0] * e[6] * e[13] +
- e[4] * e[1] * e[14] -
- e[4] * e[2] * e[13] -
- e[12] * e[1] * e[6] +
- e[12] * e[2] * e[5];
- inv.e[3] = -e[1] * e[6] * e[11] +
- e[1] * e[7] * e[10] +
- e[5] * e[2] * e[11] -
- e[5] * e[3] * e[10] -
- e[9] * e[2] * e[7] +
- e[9] * e[3] * e[6];
- inv.e[7] = e[0] * e[6] * e[11] -
- e[0] * e[7] * e[10] -
- e[4] * e[2] * e[11] +
- e[4] * e[3] * e[10] +
- e[8] * e[2] * e[7] -
- e[8] * e[3] * e[6];
- inv.e[11] = -e[0] * e[5] * e[11] +
- e[0] * e[7] * e[9] +
- e[4] * e[1] * e[11] -
- e[4] * e[3] * e[9] -
- e[8] * e[1] * e[7] +
- e[8] * e[3] * e[5];
- inv.e[15] = e[0] * e[5] * e[10] -
- e[0] * e[6] * e[9] -
- e[4] * e[1] * e[10] +
- e[4] * e[2] * e[9] +
- e[8] * e[1] * e[6] -
- e[8] * e[2] * e[5];
- float det = e[0] * inv.e[0] + e[1] * inv.e[4] + e[2] * inv.e[8] + e[3] * inv.e[12];
- float invdet = 1.0f / det;
- for (int i = 0; i < 16; i++)
- inv.e[i] *= invdet;
- return inv;
- }
- Matrix4 Matrix4::ortho(float left, float right, float bottom, float top, float near, float far)
- {
- Matrix4 m;
- m.e[0] = 2.0f / (right - left);
- m.e[5] = 2.0f / (top - bottom);
- m.e[10] = -2.0f / (far - near);
- m.e[12] = -(right + left) / (right - left);
- m.e[13] = -(top + bottom) / (top - bottom);
- m.e[14] = -(far + near) / (far - near);
- return m;
- }
- Matrix4 Matrix4::perspective(float verticalfov, float aspect, float near, float far)
- {
- Matrix4 m;
- float cotangent = 1.0f / tanf(verticalfov * 0.5f);
- m.e[0] = cotangent / aspect;
- m.e[5] = cotangent;
- m.e[10] = (far + near) / (near - far);
- m.e[11] = -1.0f;
- m.e[14] = 2.0f * near * far / (near - far);
- m.e[15] = 0.0f;
- return m;
- }
- /**
- * | e0 e3 e6 |
- * | e1 e4 e7 |
- * | e2 e5 e8 |
- **/
- Matrix3::Matrix3()
- {
- setIdentity();
- }
- Matrix3::Matrix3(const Matrix4 &mat4)
- {
- const float *mat4elems = mat4.getElements();
- // Column 0.
- e[0] = mat4elems[0];
- e[1] = mat4elems[1];
- e[2] = mat4elems[2];
- // Column 1.
- e[3] = mat4elems[4];
- e[4] = mat4elems[5];
- e[5] = mat4elems[6];
- // Column 2.
- e[6] = mat4elems[8];
- e[7] = mat4elems[9];
- e[8] = mat4elems[10];
- }
- Matrix3::Matrix3(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
- {
- setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
- }
- Matrix3::~Matrix3()
- {
- }
- void Matrix3::setIdentity()
- {
- memset(e, 0, sizeof(float) * 9);
- e[8] = e[4] = e[0] = 1.0f;
- }
- Matrix3 Matrix3::operator * (const love::Matrix3 &m) const
- {
- Matrix3 t;
- t.e[0] = (e[0]*m.e[0]) + (e[3]*m.e[1]) + (e[6]*m.e[2]);
- t.e[3] = (e[0]*m.e[3]) + (e[3]*m.e[4]) + (e[6]*m.e[5]);
- t.e[6] = (e[0]*m.e[6]) + (e[3]*m.e[7]) + (e[6]*m.e[8]);
- t.e[1] = (e[1]*m.e[0]) + (e[4]*m.e[1]) + (e[7]*m.e[2]);
- t.e[4] = (e[1]*m.e[3]) + (e[4]*m.e[4]) + (e[7]*m.e[5]);
- t.e[7] = (e[1]*m.e[6]) + (e[4]*m.e[7]) + (e[7]*m.e[8]);
- t.e[2] = (e[2]*m.e[0]) + (e[5]*m.e[1]) + (e[8]*m.e[2]);
- t.e[5] = (e[2]*m.e[3]) + (e[5]*m.e[4]) + (e[8]*m.e[5]);
- t.e[8] = (e[2]*m.e[6]) + (e[5]*m.e[7]) + (e[8]*m.e[8]);
- return t;
- }
- void Matrix3::operator *= (const Matrix3 &m)
- {
- Matrix3 t = (*this) * m;
- memcpy(e, t.e, sizeof(float) * 9);
- }
- const float *Matrix3::getElements() const
- {
- return e;
- }
- Matrix3 Matrix3::transposedInverse() const
- {
- // e0 e3 e6
- // e1 e4 e7
- // e2 e5 e8
- float det = e[0] * (e[4]*e[8] - e[7]*e[5])
- - e[1] * (e[3]*e[8] - e[5]*e[6])
- + e[2] * (e[3]*e[7] - e[4]*e[6]);
- float invdet = 1.0f / det;
- Matrix3 m;
- m.e[0] = invdet * (e[4]*e[8] - e[7]*e[5]);
- m.e[3] = -invdet * (e[1]*e[8] - e[2]*e[7]);
- m.e[6] = invdet * (e[1]*e[5] - e[2]*e[4]);
- m.e[1] = -invdet * (e[3]*e[8] - e[5]*e[6]);
- m.e[4] = invdet * (e[0]*e[8] - e[2]*e[6]);
- m.e[7] = -invdet * (e[0]*e[5] - e[3]*e[2]);
- m.e[2] = invdet * (e[3]*e[7] - e[6]*e[4]);
- m.e[5] = -invdet * (e[0]*e[7] - e[6]*e[1]);
- m.e[8] = invdet * (e[0]*e[4] - e[3]*e[1]);
- return m;
- }
- void Matrix3::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
- {
- float c = cosf(angle), s = sinf(angle);
- // matrix multiplication carried out on paper:
- // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
- // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
- // | 1| | 1| | 1| | 1| | 1 |
- // move rotate scale skew origin
- e[0] = c * sx - ky * s * sy; // = a
- e[1] = s * sx + ky * c * sy; // = b
- e[3] = kx * c * sx - s * sy; // = c
- e[4] = kx * s * sx + c * sy; // = d
- e[6] = x - ox * e[0] - oy * e[3];
- e[7] = y - ox * e[1] - oy * e[4];
- e[2] = e[5] = 0.0f;
- e[8] = 1.0f;
- }
- } // love
|