mixer_sse.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. #include "config.h"
  2. #include <xmmintrin.h>
  3. #include "AL/al.h"
  4. #include "AL/alc.h"
  5. #include "alMain.h"
  6. #include "alu.h"
  7. #include "alSource.h"
  8. #include "alAuxEffectSlot.h"
  9. #include "mixer_defs.h"
  10. const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *src, ALuint frac,
  11. ALuint increment, ALfloat *restrict dst, ALuint dstlen)
  12. {
  13. const __m128 sf4 = _mm_set1_ps(state->sf);
  14. const ALuint m = state->m;
  15. const ALint l = state->l;
  16. const ALfloat *fil, *scd, *phd, *spd;
  17. ALuint pi, j_f, i;
  18. ALfloat pf;
  19. ALint j_s;
  20. __m128 r4;
  21. for(i = 0;i < dstlen;i++)
  22. {
  23. // Calculate the phase index and factor.
  24. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
  25. pi = frac >> FRAC_PHASE_BITDIFF;
  26. pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
  27. #undef FRAC_PHASE_BITDIFF
  28. fil = state->coeffs[pi].filter;
  29. scd = state->coeffs[pi].scDelta;
  30. phd = state->coeffs[pi].phDelta;
  31. spd = state->coeffs[pi].spDelta;
  32. // Apply the scale and phase interpolated filter.
  33. r4 = _mm_setzero_ps();
  34. {
  35. const __m128 pf4 = _mm_set1_ps(pf);
  36. for(j_f = 0,j_s = l;j_f < m;j_f+=4,j_s+=4)
  37. {
  38. const __m128 f4 = _mm_add_ps(
  39. _mm_add_ps(
  40. _mm_load_ps(&fil[j_f]),
  41. _mm_mul_ps(sf4, _mm_load_ps(&scd[j_f]))
  42. ),
  43. _mm_mul_ps(
  44. pf4,
  45. _mm_add_ps(
  46. _mm_load_ps(&phd[j_f]),
  47. _mm_mul_ps(sf4, _mm_load_ps(&spd[j_f]))
  48. )
  49. )
  50. );
  51. r4 = _mm_add_ps(r4, _mm_mul_ps(f4, _mm_loadu_ps(&src[j_s])));
  52. }
  53. }
  54. r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
  55. r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
  56. dst[i] = _mm_cvtss_f32(r4);
  57. frac += increment;
  58. src += frac>>FRACTIONBITS;
  59. frac &= FRACTIONMASK;
  60. }
  61. return dst;
  62. }
  63. static inline void SetupCoeffs(ALfloat (*restrict OutCoeffs)[2],
  64. const HrtfParams *hrtfparams,
  65. ALuint IrSize, ALuint Counter)
  66. {
  67. const __m128 counter4 = _mm_set1_ps((float)Counter);
  68. __m128 coeffs, step4;
  69. ALuint i;
  70. for(i = 0;i < IrSize;i += 2)
  71. {
  72. step4 = _mm_load_ps(&hrtfparams->CoeffStep[i][0]);
  73. coeffs = _mm_load_ps(&hrtfparams->Coeffs[i][0]);
  74. coeffs = _mm_sub_ps(coeffs, _mm_mul_ps(step4, counter4));
  75. _mm_store_ps(&OutCoeffs[i][0], coeffs);
  76. }
  77. }
  78. static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
  79. const ALuint IrSize,
  80. ALfloat (*restrict Coeffs)[2],
  81. const ALfloat (*restrict CoeffStep)[2],
  82. ALfloat left, ALfloat right)
  83. {
  84. const __m128 lrlr = _mm_setr_ps(left, right, left, right);
  85. __m128 coeffs, deltas, imp0, imp1;
  86. __m128 vals = _mm_setzero_ps();
  87. ALuint i;
  88. if((Offset&1))
  89. {
  90. const ALuint o0 = Offset&HRIR_MASK;
  91. const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
  92. coeffs = _mm_load_ps(&Coeffs[0][0]);
  93. deltas = _mm_load_ps(&CoeffStep[0][0]);
  94. vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
  95. imp0 = _mm_mul_ps(lrlr, coeffs);
  96. coeffs = _mm_add_ps(coeffs, deltas);
  97. vals = _mm_add_ps(imp0, vals);
  98. _mm_store_ps(&Coeffs[0][0], coeffs);
  99. _mm_storel_pi((__m64*)&Values[o0][0], vals);
  100. for(i = 1;i < IrSize-1;i += 2)
  101. {
  102. const ALuint o2 = (Offset+i)&HRIR_MASK;
  103. coeffs = _mm_load_ps(&Coeffs[i+1][0]);
  104. deltas = _mm_load_ps(&CoeffStep[i+1][0]);
  105. vals = _mm_load_ps(&Values[o2][0]);
  106. imp1 = _mm_mul_ps(lrlr, coeffs);
  107. coeffs = _mm_add_ps(coeffs, deltas);
  108. imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
  109. vals = _mm_add_ps(imp0, vals);
  110. _mm_store_ps(&Coeffs[i+1][0], coeffs);
  111. _mm_store_ps(&Values[o2][0], vals);
  112. imp0 = imp1;
  113. }
  114. vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
  115. imp0 = _mm_movehl_ps(imp0, imp0);
  116. vals = _mm_add_ps(imp0, vals);
  117. _mm_storel_pi((__m64*)&Values[o1][0], vals);
  118. }
  119. else
  120. {
  121. for(i = 0;i < IrSize;i += 2)
  122. {
  123. const ALuint o = (Offset + i)&HRIR_MASK;
  124. coeffs = _mm_load_ps(&Coeffs[i][0]);
  125. deltas = _mm_load_ps(&CoeffStep[i][0]);
  126. vals = _mm_load_ps(&Values[o][0]);
  127. imp0 = _mm_mul_ps(lrlr, coeffs);
  128. coeffs = _mm_add_ps(coeffs, deltas);
  129. vals = _mm_add_ps(imp0, vals);
  130. _mm_store_ps(&Coeffs[i][0], coeffs);
  131. _mm_store_ps(&Values[o][0], vals);
  132. }
  133. }
  134. }
  135. static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
  136. const ALuint IrSize,
  137. ALfloat (*restrict Coeffs)[2],
  138. ALfloat left, ALfloat right)
  139. {
  140. const __m128 lrlr = _mm_setr_ps(left, right, left, right);
  141. __m128 vals = _mm_setzero_ps();
  142. __m128 coeffs;
  143. ALuint i;
  144. if((Offset&1))
  145. {
  146. const ALuint o0 = Offset&HRIR_MASK;
  147. const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
  148. __m128 imp0, imp1;
  149. coeffs = _mm_load_ps(&Coeffs[0][0]);
  150. vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
  151. imp0 = _mm_mul_ps(lrlr, coeffs);
  152. vals = _mm_add_ps(imp0, vals);
  153. _mm_storel_pi((__m64*)&Values[o0][0], vals);
  154. for(i = 1;i < IrSize-1;i += 2)
  155. {
  156. const ALuint o2 = (Offset+i)&HRIR_MASK;
  157. coeffs = _mm_load_ps(&Coeffs[i+1][0]);
  158. vals = _mm_load_ps(&Values[o2][0]);
  159. imp1 = _mm_mul_ps(lrlr, coeffs);
  160. imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
  161. vals = _mm_add_ps(imp0, vals);
  162. _mm_store_ps(&Values[o2][0], vals);
  163. imp0 = imp1;
  164. }
  165. vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
  166. imp0 = _mm_movehl_ps(imp0, imp0);
  167. vals = _mm_add_ps(imp0, vals);
  168. _mm_storel_pi((__m64*)&Values[o1][0], vals);
  169. }
  170. else
  171. {
  172. for(i = 0;i < IrSize;i += 2)
  173. {
  174. const ALuint o = (Offset + i)&HRIR_MASK;
  175. coeffs = _mm_load_ps(&Coeffs[i][0]);
  176. vals = _mm_load_ps(&Values[o][0]);
  177. vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
  178. _mm_store_ps(&Values[o][0], vals);
  179. }
  180. }
  181. }
  182. #define MixHrtf MixHrtf_SSE
  183. #include "mixer_inc.c"
  184. #undef MixHrtf
  185. void Mix_SSE(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
  186. MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize)
  187. {
  188. ALfloat gain, step;
  189. __m128 gain4;
  190. ALuint c;
  191. for(c = 0;c < OutChans;c++)
  192. {
  193. ALuint pos = 0;
  194. gain = Gains[c].Current;
  195. step = Gains[c].Step;
  196. if(step != 0.0f && Counter > 0)
  197. {
  198. ALuint minsize = minu(BufferSize, Counter);
  199. /* Mix with applying gain steps in aligned multiples of 4. */
  200. if(minsize-pos > 3)
  201. {
  202. __m128 step4;
  203. gain4 = _mm_setr_ps(
  204. gain,
  205. gain + step,
  206. gain + step + step,
  207. gain + step + step + step
  208. );
  209. step4 = _mm_set1_ps(step + step + step + step);
  210. do {
  211. const __m128 val4 = _mm_load_ps(&data[pos]);
  212. __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
  213. dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
  214. gain4 = _mm_add_ps(gain4, step4);
  215. _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
  216. pos += 4;
  217. } while(minsize-pos > 3);
  218. /* NOTE: gain4 now represents the next four gains after the
  219. * last four mixed samples, so the lowest element represents
  220. * the next gain to apply.
  221. */
  222. gain = _mm_cvtss_f32(gain4);
  223. }
  224. /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
  225. for(;pos < minsize;pos++)
  226. {
  227. OutBuffer[c][OutPos+pos] += data[pos]*gain;
  228. gain += step;
  229. }
  230. if(pos == Counter)
  231. gain = Gains[c].Target;
  232. Gains[c].Current = gain;
  233. /* Mix until pos is aligned with 4 or the mix is done. */
  234. minsize = minu(BufferSize, (pos+3)&~3);
  235. for(;pos < minsize;pos++)
  236. OutBuffer[c][OutPos+pos] += data[pos]*gain;
  237. }
  238. if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
  239. continue;
  240. gain4 = _mm_set1_ps(gain);
  241. for(;BufferSize-pos > 3;pos += 4)
  242. {
  243. const __m128 val4 = _mm_load_ps(&data[pos]);
  244. __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
  245. dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
  246. _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
  247. }
  248. for(;pos < BufferSize;pos++)
  249. OutBuffer[c][OutPos+pos] += data[pos]*gain;
  250. }
  251. }