| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 1999-2007 by authors.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <ctype.h>
- #include <assert.h>
- #include "alMain.h"
- #include "alSource.h"
- #include "alBuffer.h"
- #include "alListener.h"
- #include "alAuxEffectSlot.h"
- #include "alu.h"
- #include "bs2b.h"
- #include "hrtf.h"
- #include "static_assert.h"
- #include "mixer_defs.h"
- #include "backends/base.h"
- struct ChanMap {
- enum Channel channel;
- ALfloat angle;
- ALfloat elevation;
- };
- /* Cone scalar */
- ALfloat ConeScale = 1.0f;
- /* Localized Z scalar for mono sources */
- ALfloat ZScale = 1.0f;
- extern inline ALfloat minf(ALfloat a, ALfloat b);
- extern inline ALfloat maxf(ALfloat a, ALfloat b);
- extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
- extern inline ALdouble mind(ALdouble a, ALdouble b);
- extern inline ALdouble maxd(ALdouble a, ALdouble b);
- extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
- extern inline ALuint minu(ALuint a, ALuint b);
- extern inline ALuint maxu(ALuint a, ALuint b);
- extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
- extern inline ALint mini(ALint a, ALint b);
- extern inline ALint maxi(ALint a, ALint b);
- extern inline ALint clampi(ALint val, ALint min, ALint max);
- extern inline ALint64 mini64(ALint64 a, ALint64 b);
- extern inline ALint64 maxi64(ALint64 a, ALint64 b);
- extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
- extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
- extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
- extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
- extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
- extern inline ALfloat resample_fir4(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALuint frac);
- extern inline ALfloat resample_fir8(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat val5, ALfloat val6, ALfloat val7, ALuint frac);
- extern inline void aluVectorSet(aluVector *restrict vector, ALfloat x, ALfloat y, ALfloat z, ALfloat w);
- extern inline void aluMatrixfSetRow(aluMatrixf *matrix, ALuint row,
- ALfloat m0, ALfloat m1, ALfloat m2, ALfloat m3);
- extern inline void aluMatrixfSet(aluMatrixf *matrix,
- ALfloat m00, ALfloat m01, ALfloat m02, ALfloat m03,
- ALfloat m10, ALfloat m11, ALfloat m12, ALfloat m13,
- ALfloat m20, ALfloat m21, ALfloat m22, ALfloat m23,
- ALfloat m30, ALfloat m31, ALfloat m32, ALfloat m33);
- extern inline void aluMatrixdSetRow(aluMatrixd *matrix, ALuint row,
- ALdouble m0, ALdouble m1, ALdouble m2, ALdouble m3);
- extern inline void aluMatrixdSet(aluMatrixd *matrix,
- ALdouble m00, ALdouble m01, ALdouble m02, ALdouble m03,
- ALdouble m10, ALdouble m11, ALdouble m12, ALdouble m13,
- ALdouble m20, ALdouble m21, ALdouble m22, ALdouble m23,
- ALdouble m30, ALdouble m31, ALdouble m32, ALdouble m33);
- /* NOTE: HRTF is set up a bit special in the device. By default, the device's
- * DryBuffer, NumChannels, ChannelName, and Channel fields correspond to the
- * output mixing format, and the DryBuffer is then converted and written to the
- * backend's audio buffer.
- *
- * With HRTF, these fields correspond to a virtual format (typically B-Format),
- * and the actual output is stored in DryBuffer[NumChannels] for the left
- * channel and DryBuffer[NumChannels+1] for the right. As a final output step,
- * the virtual channels will have HRTF applied and written to the actual
- * output. Things like effects and B-Format decoding will want to write to the
- * virtual channels so that they can be mixed with HRTF in full 3D.
- *
- * Sources that get mixed using HRTF directly (or that want to skip HRTF
- * completely) will need to offset the output buffer so that they skip the
- * virtual output and write to the actual output channels. This is the reason
- * you'll see
- *
- * voice->Direct.OutBuffer += voice->Direct.OutChannels;
- * voice->Direct.OutChannels = 2;
- *
- * at various points in the code where HRTF is explicitly used or bypassed.
- */
- static inline HrtfMixerFunc SelectHrtfMixer(void)
- {
- #ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return MixHrtf_SSE;
- #endif
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return MixHrtf_Neon;
- #endif
- return MixHrtf_C;
- }
- static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
- {
- outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
- outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
- outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
- }
- static inline ALfloat aluDotproduct(const aluVector *vec1, const aluVector *vec2)
- {
- return vec1->v[0]*vec2->v[0] + vec1->v[1]*vec2->v[1] + vec1->v[2]*vec2->v[2];
- }
- static inline ALfloat aluNormalize(ALfloat *vec)
- {
- ALfloat length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- if(length > 0.0f)
- {
- ALfloat inv_length = 1.0f/length;
- vec[0] *= inv_length;
- vec[1] *= inv_length;
- vec[2] *= inv_length;
- }
- return length;
- }
- static inline void aluCrossproductd(const ALdouble *inVector1, const ALdouble *inVector2, ALdouble *outVector)
- {
- outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
- outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
- outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
- }
- static inline ALdouble aluNormalized(ALdouble *vec)
- {
- ALdouble length = sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- if(length > 0.0)
- {
- ALdouble inv_length = 1.0/length;
- vec[0] *= inv_length;
- vec[1] *= inv_length;
- vec[2] *= inv_length;
- }
- return length;
- }
- static inline ALvoid aluMatrixdFloat3(ALfloat *vec, ALfloat w, const aluMatrixd *mtx)
- {
- ALdouble v[4] = { vec[0], vec[1], vec[2], w };
- vec[0] = (ALfloat)(v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0]);
- vec[1] = (ALfloat)(v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1]);
- vec[2] = (ALfloat)(v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2]);
- }
- static inline ALvoid aluMatrixdDouble3(ALdouble *vec, ALdouble w, const aluMatrixd *mtx)
- {
- ALdouble v[4] = { vec[0], vec[1], vec[2], w };
- vec[0] = v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0];
- vec[1] = v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1];
- vec[2] = v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2];
- }
- static inline aluVector aluMatrixdVector(const aluMatrixd *mtx, const aluVector *vec)
- {
- aluVector v;
- v.v[0] = (ALfloat)(vec->v[0]*mtx->m[0][0] + vec->v[1]*mtx->m[1][0] + vec->v[2]*mtx->m[2][0] + vec->v[3]*mtx->m[3][0]);
- v.v[1] = (ALfloat)(vec->v[0]*mtx->m[0][1] + vec->v[1]*mtx->m[1][1] + vec->v[2]*mtx->m[2][1] + vec->v[3]*mtx->m[3][1]);
- v.v[2] = (ALfloat)(vec->v[0]*mtx->m[0][2] + vec->v[1]*mtx->m[1][2] + vec->v[2]*mtx->m[2][2] + vec->v[3]*mtx->m[3][2]);
- v.v[3] = (ALfloat)(vec->v[0]*mtx->m[0][3] + vec->v[1]*mtx->m[1][3] + vec->v[2]*mtx->m[2][3] + vec->v[3]*mtx->m[3][3]);
- return v;
- }
- /* Prepares the interpolator for a given rate (determined by increment). A
- * result of AL_FALSE indicates that the filter output will completely cut
- * the input signal.
- *
- * With a bit of work, and a trade of memory for CPU cost, this could be
- * modified for use with an interpolated increment for buttery-smooth pitch
- * changes.
- */
- static ALboolean BsincPrepare(const ALuint increment, BsincState *state)
- {
- static const ALfloat scaleBase = 1.510578918e-01f, scaleRange = 1.177936623e+00f;
- static const ALuint m[BSINC_SCALE_COUNT] = { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 };
- static const ALuint to[4][BSINC_SCALE_COUNT] =
- {
- { 0, 24, 408, 792, 1176, 1560, 1944, 2328, 2648, 2968, 3288, 3544, 3800, 4056, 4248, 4440 },
- { 4632, 5016, 5400, 5784, 6168, 6552, 6936, 7320, 7640, 7960, 8280, 8536, 8792, 9048, 9240, 0 },
- { 0, 9432, 9816, 10200, 10584, 10968, 11352, 11736, 12056, 12376, 12696, 12952, 13208, 13464, 13656, 13848 },
- { 14040, 14424, 14808, 15192, 15576, 15960, 16344, 16728, 17048, 17368, 17688, 17944, 18200, 18456, 18648, 0 }
- };
- static const ALuint tm[2][BSINC_SCALE_COUNT] =
- {
- { 0, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 },
- { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 0 }
- };
- ALfloat sf;
- ALuint si, pi;
- ALboolean uncut = AL_TRUE;
- if(increment > FRACTIONONE)
- {
- sf = (ALfloat)FRACTIONONE / increment;
- if(sf < scaleBase)
- {
- /* Signal has been completely cut. The return result can be used
- * to skip the filter (and output zeros) as an optimization.
- */
- sf = 0.0f;
- si = 0;
- uncut = AL_FALSE;
- }
- else
- {
- sf = (BSINC_SCALE_COUNT - 1) * (sf - scaleBase) * scaleRange;
- si = fastf2u(sf);
- /* The interpolation factor is fit to this diagonally-symmetric
- * curve to reduce the transition ripple caused by interpolating
- * different scales of the sinc function.
- */
- sf = 1.0f - cosf(asinf(sf - si));
- }
- }
- else
- {
- sf = 0.0f;
- si = BSINC_SCALE_COUNT - 1;
- }
- state->sf = sf;
- state->m = m[si];
- state->l = -(ALint)((m[si] / 2) - 1);
- /* The CPU cost of this table re-mapping could be traded for the memory
- * cost of a complete table map (1024 elements large).
- */
- for(pi = 0;pi < BSINC_PHASE_COUNT;pi++)
- {
- state->coeffs[pi].filter = &bsincTab[to[0][si] + tm[0][si]*pi];
- state->coeffs[pi].scDelta = &bsincTab[to[1][si] + tm[1][si]*pi];
- state->coeffs[pi].phDelta = &bsincTab[to[2][si] + tm[0][si]*pi];
- state->coeffs[pi].spDelta = &bsincTab[to[3][si] + tm[1][si]*pi];
- }
- return uncut;
- }
- /* Calculates the fade time from the changes in gain and listener to source
- * angle between updates. The result is a the time, in seconds, for the
- * transition to complete.
- */
- static ALfloat CalcFadeTime(ALfloat oldGain, ALfloat newGain, const aluVector *olddir, const aluVector *newdir)
- {
- ALfloat gainChange, angleChange, change;
- /* Calculate the normalized dB gain change. */
- newGain = maxf(newGain, 0.0001f);
- oldGain = maxf(oldGain, 0.0001f);
- gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
- /* Calculate the angle change only when there is enough gain to notice it. */
- angleChange = 0.0f;
- if(gainChange > 0.0001f || newGain > 0.0001f)
- {
- /* No angle change when the directions are equal or degenerate (when
- * both have zero length).
- */
- if(newdir->v[0] != olddir->v[0] || newdir->v[1] != olddir->v[1] || newdir->v[2] != olddir->v[2])
- {
- ALfloat dotp = aluDotproduct(olddir, newdir);
- angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
- }
- }
- /* Use the largest of the two changes, and apply a significance shaping
- * function to it. The result is then scaled to cover a 15ms transition
- * range.
- */
- change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
- return minf(change, 1.0f) * 0.015f;
- }
- static void UpdateDryStepping(DirectParams *params, ALuint num_chans, ALuint steps)
- {
- ALfloat delta;
- ALuint i, j;
- if(steps < 2)
- {
- for(i = 0;i < num_chans;i++)
- {
- MixGains *gains = params->Gains[i];
- for(j = 0;j < params->OutChannels;j++)
- {
- gains[j].Current = gains[j].Target;
- gains[j].Step = 0.0f;
- }
- }
- params->Counter = 0;
- return;
- }
- delta = 1.0f / (ALfloat)steps;
- for(i = 0;i < num_chans;i++)
- {
- MixGains *gains = params->Gains[i];
- for(j = 0;j < params->OutChannels;j++)
- {
- ALfloat diff = gains[j].Target - gains[j].Current;
- if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
- gains[j].Step = diff * delta;
- else
- {
- gains[j].Current = gains[j].Target;
- gains[j].Step = 0.0f;
- }
- }
- }
- params->Counter = steps;
- }
- static void UpdateWetStepping(SendParams *params, ALuint num_chans, ALuint steps)
- {
- ALfloat delta;
- ALuint i;
- if(steps < 2)
- {
- for(i = 0;i < num_chans;i++)
- {
- params->Gains[i].Current = params->Gains[i].Target;
- params->Gains[i].Step = 0.0f;
- }
- params->Counter = 0;
- return;
- }
- delta = 1.0f / (ALfloat)steps;
- for(i = 0;i < num_chans;i++)
- {
- ALfloat diff = params->Gains[i].Target - params->Gains[i].Current;
- if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
- params->Gains[i].Step = diff * delta;
- else
- {
- params->Gains[i].Current = params->Gains[i].Target;
- params->Gains[i].Step = 0.0f;
- }
- }
- params->Counter = steps;
- }
- static ALvoid CalcListenerParams(ALlistener *Listener)
- {
- ALdouble N[3], V[3], U[3], P[3];
- /* AT then UP */
- N[0] = Listener->Forward[0];
- N[1] = Listener->Forward[1];
- N[2] = Listener->Forward[2];
- aluNormalized(N);
- V[0] = Listener->Up[0];
- V[1] = Listener->Up[1];
- V[2] = Listener->Up[2];
- aluNormalized(V);
- /* Build and normalize right-vector */
- aluCrossproductd(N, V, U);
- aluNormalized(U);
- aluMatrixdSet(&Listener->Params.Matrix,
- U[0], V[0], -N[0], 0.0,
- U[1], V[1], -N[1], 0.0,
- U[2], V[2], -N[2], 0.0,
- 0.0, 0.0, 0.0, 1.0
- );
- P[0] = Listener->Position.v[0];
- P[1] = Listener->Position.v[1];
- P[2] = Listener->Position.v[2];
- aluMatrixdDouble3(P, 1.0, &Listener->Params.Matrix);
- aluMatrixdSetRow(&Listener->Params.Matrix, 3, -P[0], -P[1], -P[2], 1.0f);
- Listener->Params.Velocity = aluMatrixdVector(&Listener->Params.Matrix, &Listener->Velocity);
- }
- ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
- {
- static const struct ChanMap MonoMap[1] = {
- { FrontCenter, 0.0f, 0.0f }
- }, StereoMap[2] = {
- { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
- }, StereoWideMap[2] = {
- { FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- }, RearMap[2] = {
- { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
- }, QuadMap[4] = {
- { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
- { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
- }, X51Map[6] = {
- { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
- }, X61Map[7] = {
- { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
- { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- }, X71Map[8] = {
- { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
- { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- };
- ALCdevice *Device = ALContext->Device;
- ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
- ALbufferlistitem *BufferListItem;
- enum FmtChannels Channels;
- ALfloat DryGain, DryGainHF, DryGainLF;
- ALfloat WetGain[MAX_SENDS];
- ALfloat WetGainHF[MAX_SENDS];
- ALfloat WetGainLF[MAX_SENDS];
- ALuint NumSends, Frequency;
- ALboolean Relative;
- const struct ChanMap *chans = NULL;
- ALuint num_channels = 0;
- ALboolean DirectChannels;
- ALboolean isbformat = AL_FALSE;
- ALfloat Pitch;
- ALuint i, j, c;
- /* Get device properties */
- NumSends = Device->NumAuxSends;
- Frequency = Device->Frequency;
- /* Get listener properties */
- ListenerGain = ALContext->Listener->Gain;
- /* Get source properties */
- SourceVolume = ALSource->Gain;
- MinVolume = ALSource->MinGain;
- MaxVolume = ALSource->MaxGain;
- Pitch = ALSource->Pitch;
- Relative = ALSource->HeadRelative;
- DirectChannels = ALSource->DirectChannels;
- voice->Direct.OutBuffer = Device->DryBuffer;
- voice->Direct.OutChannels = Device->NumChannels;
- for(i = 0;i < NumSends;i++)
- {
- ALeffectslot *Slot = ALSource->Send[i].Slot;
- if(!Slot && i == 0)
- Slot = Device->DefaultSlot;
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
- voice->Send[i].OutBuffer = NULL;
- else
- voice->Send[i].OutBuffer = Slot->WetBuffer;
- }
- /* Calculate the stepping value */
- Channels = FmtMono;
- BufferListItem = ATOMIC_LOAD(&ALSource->queue);
- while(BufferListItem != NULL)
- {
- ALbuffer *ALBuffer;
- if((ALBuffer=BufferListItem->buffer) != NULL)
- {
- Pitch = Pitch * ALBuffer->Frequency / Frequency;
- if(Pitch > (ALfloat)MAX_PITCH)
- voice->Step = MAX_PITCH<<FRACTIONBITS;
- else
- voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
- BsincPrepare(voice->Step, &voice->SincState);
- Channels = ALBuffer->FmtChannels;
- break;
- }
- BufferListItem = BufferListItem->next;
- }
- /* Calculate gains */
- DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
- DryGain *= ALSource->Direct.Gain * ListenerGain;
- DryGainHF = ALSource->Direct.GainHF;
- DryGainLF = ALSource->Direct.GainLF;
- for(i = 0;i < NumSends;i++)
- {
- WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
- WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
- WetGainHF[i] = ALSource->Send[i].GainHF;
- WetGainLF[i] = ALSource->Send[i].GainLF;
- }
- switch(Channels)
- {
- case FmtMono:
- chans = MonoMap;
- num_channels = 1;
- break;
- case FmtStereo:
- /* HACK: Place the stereo channels at +/-90 degrees when using non-
- * HRTF stereo output. This helps reduce the "monoization" caused
- * by them panning towards the center. */
- if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
- chans = StereoWideMap;
- else
- chans = StereoMap;
- num_channels = 2;
- break;
- case FmtRear:
- chans = RearMap;
- num_channels = 2;
- break;
- case FmtQuad:
- chans = QuadMap;
- num_channels = 4;
- break;
- case FmtX51:
- chans = X51Map;
- num_channels = 6;
- break;
- case FmtX61:
- chans = X61Map;
- num_channels = 7;
- break;
- case FmtX71:
- chans = X71Map;
- num_channels = 8;
- break;
- case FmtBFormat2D:
- num_channels = 3;
- isbformat = AL_TRUE;
- DirectChannels = AL_FALSE;
- break;
- case FmtBFormat3D:
- num_channels = 4;
- isbformat = AL_TRUE;
- DirectChannels = AL_FALSE;
- break;
- }
- if(isbformat)
- {
- ALfloat N[3], V[3], U[3];
- aluMatrixf matrix;
- ALfloat scale;
- /* AT then UP */
- N[0] = ALSource->Orientation[0][0];
- N[1] = ALSource->Orientation[0][1];
- N[2] = ALSource->Orientation[0][2];
- aluNormalize(N);
- V[0] = ALSource->Orientation[1][0];
- V[1] = ALSource->Orientation[1][1];
- V[2] = ALSource->Orientation[1][2];
- aluNormalize(V);
- if(!Relative)
- {
- const aluMatrixd *lmatrix = &ALContext->Listener->Params.Matrix;
- aluMatrixdFloat3(N, 0.0f, lmatrix);
- aluMatrixdFloat3(V, 0.0f, lmatrix);
- }
- /* Build and normalize right-vector */
- aluCrossproduct(N, V, U);
- aluNormalize(U);
- /* Build a rotate + conversion matrix (B-Format -> N3D), and include
- * scaling for first-order content. */
- scale = Device->AmbiScale * 1.732050808f;
- aluMatrixfSet(&matrix,
- 1.414213562f, 0.0f, 0.0f, 0.0f,
- 0.0f, -N[0]*scale, N[1]*scale, -N[2]*scale,
- 0.0f, U[0]*scale, -U[1]*scale, U[2]*scale,
- 0.0f, -V[0]*scale, V[1]*scale, -V[2]*scale
- );
- for(c = 0;c < num_channels;c++)
- {
- MixGains *gains = voice->Direct.Gains[c];
- ALfloat Target[MAX_OUTPUT_CHANNELS];
- ComputeBFormatGains(Device, matrix.m[c], DryGain, Target);
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = Target[i];
- }
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_FALSE;
- for(i = 0;i < NumSends;i++)
- {
- /* Only the first channel of B-Format buffers (W) goes to auxiliary
- * sends. It also needs to be scaled by sqrt(2) to account for the
- * signal being scaled by sqrt(1/2).
- */
- voice->Send[i].Gains[0].Target = WetGain[i] * 1.414213562f;
- for(c = 1;c < num_channels;c++)
- voice->Send[i].Gains[c].Target = 0.0f;
- UpdateWetStepping(&voice->Send[i], num_channels, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
- }
- }
- else
- {
- if(DirectChannels)
- {
- if(Device->Hrtf)
- {
- /* DirectChannels with HRTF enabled. Skip the virtual channels
- * and write FrontLeft and FrontRight inputs to the first and
- * second outputs.
- */
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
- for(c = 0;c < num_channels;c++)
- {
- MixGains *gains = voice->Direct.Gains[c];
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = 0.0f;
- if(chans[c].channel == FrontLeft)
- gains[0].Target = DryGain;
- else if(chans[c].channel == FrontRight)
- gains[1].Target = DryGain;
- }
- }
- else for(c = 0;c < num_channels;c++)
- {
- MixGains *gains = voice->Direct.Gains[c];
- int idx;
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = 0.0f;
- if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
- gains[idx].Target = DryGain;
- }
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_FALSE;
- }
- else if(Device->Hrtf_Mode == FullHrtf)
- {
- /* Full HRTF rendering. Skip the virtual channels and render each
- * input channel to the real outputs.
- */
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
- for(c = 0;c < num_channels;c++)
- {
- if(chans[c].channel == LFE)
- {
- /* Skip LFE */
- voice->Direct.Hrtf[c].Params.Delay[0] = 0;
- voice->Direct.Hrtf[c].Params.Delay[1] = 0;
- for(i = 0;i < HRIR_LENGTH;i++)
- {
- voice->Direct.Hrtf[c].Params.Coeffs[i][0] = 0.0f;
- voice->Direct.Hrtf[c].Params.Coeffs[i][1] = 0.0f;
- }
- }
- else
- {
- /* Get the static HRIR coefficients and delays for this
- * channel. */
- GetLerpedHrtfCoeffs(Device->Hrtf,
- chans[c].elevation, chans[c].angle, 1.0f, DryGain,
- voice->Direct.Hrtf[c].Params.Coeffs,
- voice->Direct.Hrtf[c].Params.Delay
- );
- }
- }
- voice->Direct.Counter = 0;
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_TRUE;
- }
- else
- {
- /* Basic or no HRTF rendering. Use normal panning to the output. */
- for(c = 0;c < num_channels;c++)
- {
- MixGains *gains = voice->Direct.Gains[c];
- ALfloat Target[MAX_OUTPUT_CHANNELS];
- /* Special-case LFE */
- if(chans[c].channel == LFE)
- {
- int idx;
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = 0.0f;
- if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
- gains[idx].Target = DryGain;
- continue;
- }
- ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = Target[i];
- }
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_FALSE;
- }
- for(i = 0;i < NumSends;i++)
- {
- for(c = 0;c < num_channels;c++)
- voice->Send[i].Gains[c].Target = WetGain[i];
- UpdateWetStepping(&voice->Send[i], num_channels, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
- }
- }
- {
- ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
- ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
- DryGainHF = maxf(DryGainHF, 0.0001f);
- DryGainLF = maxf(DryGainLF, 0.0001f);
- for(c = 0;c < num_channels;c++)
- {
- voice->Direct.Filters[c].ActiveType = AF_None;
- if(DryGainHF != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
- if(DryGainLF != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf,
- DryGainHF, hfscale, calc_rcpQ_from_slope(DryGainHF, 0.75f)
- );
- ALfilterState_setParams(
- &voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf,
- DryGainLF, lfscale, calc_rcpQ_from_slope(DryGainLF, 0.75f)
- );
- }
- }
- for(i = 0;i < NumSends;i++)
- {
- ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
- ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
- WetGainHF[i] = maxf(WetGainHF[i], 0.0001f);
- WetGainLF[i] = maxf(WetGainLF[i], 0.0001f);
- for(c = 0;c < num_channels;c++)
- {
- voice->Send[i].Filters[c].ActiveType = AF_None;
- if(WetGainHF[i] != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
- if(WetGainLF[i] != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf,
- WetGainHF[i], hfscale, calc_rcpQ_from_slope(WetGainHF[i], 0.75f)
- );
- ALfilterState_setParams(
- &voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf,
- WetGainLF[i], lfscale, calc_rcpQ_from_slope(WetGainLF[i], 0.75f)
- );
- }
- }
- }
- ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
- {
- ALCdevice *Device = ALContext->Device;
- aluVector Position, Velocity, Direction, SourceToListener;
- ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
- ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
- ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
- ALfloat DopplerFactor, SpeedOfSound;
- ALfloat AirAbsorptionFactor;
- ALfloat RoomAirAbsorption[MAX_SENDS];
- ALbufferlistitem *BufferListItem;
- ALfloat Attenuation;
- ALfloat RoomAttenuation[MAX_SENDS];
- ALfloat MetersPerUnit;
- ALfloat RoomRolloffBase;
- ALfloat RoomRolloff[MAX_SENDS];
- ALfloat DecayDistance[MAX_SENDS];
- ALfloat DryGain;
- ALfloat DryGainHF;
- ALfloat DryGainLF;
- ALboolean DryGainHFAuto;
- ALfloat WetGain[MAX_SENDS];
- ALfloat WetGainHF[MAX_SENDS];
- ALfloat WetGainLF[MAX_SENDS];
- ALboolean WetGainAuto;
- ALboolean WetGainHFAuto;
- ALfloat Pitch;
- ALuint Frequency;
- ALint NumSends;
- ALint i, j;
- DryGainHF = 1.0f;
- DryGainLF = 1.0f;
- for(i = 0;i < MAX_SENDS;i++)
- {
- WetGainHF[i] = 1.0f;
- WetGainLF[i] = 1.0f;
- }
- /* Get context/device properties */
- DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
- SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
- NumSends = Device->NumAuxSends;
- Frequency = Device->Frequency;
- /* Get listener properties */
- ListenerGain = ALContext->Listener->Gain;
- MetersPerUnit = ALContext->Listener->MetersPerUnit;
- /* Get source properties */
- SourceVolume = ALSource->Gain;
- MinVolume = ALSource->MinGain;
- MaxVolume = ALSource->MaxGain;
- Pitch = ALSource->Pitch;
- Position = ALSource->Position;
- Direction = ALSource->Direction;
- Velocity = ALSource->Velocity;
- MinDist = ALSource->RefDistance;
- MaxDist = ALSource->MaxDistance;
- Rolloff = ALSource->RollOffFactor;
- InnerAngle = ALSource->InnerAngle;
- OuterAngle = ALSource->OuterAngle;
- AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
- DryGainHFAuto = ALSource->DryGainHFAuto;
- WetGainAuto = ALSource->WetGainAuto;
- WetGainHFAuto = ALSource->WetGainHFAuto;
- RoomRolloffBase = ALSource->RoomRolloffFactor;
- voice->Direct.OutBuffer = Device->DryBuffer;
- voice->Direct.OutChannels = Device->NumChannels;
- for(i = 0;i < NumSends;i++)
- {
- ALeffectslot *Slot = ALSource->Send[i].Slot;
- if(!Slot && i == 0)
- Slot = Device->DefaultSlot;
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
- {
- Slot = NULL;
- RoomRolloff[i] = 0.0f;
- DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = 1.0f;
- }
- else if(Slot->AuxSendAuto)
- {
- RoomRolloff[i] = RoomRolloffBase;
- if(IsReverbEffect(Slot->EffectType))
- {
- RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
- DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
- SPEEDOFSOUNDMETRESPERSEC;
- RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
- }
- else
- {
- DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = 1.0f;
- }
- }
- else
- {
- /* If the slot's auxiliary send auto is off, the data sent to the
- * effect slot is the same as the dry path, sans filter effects */
- RoomRolloff[i] = Rolloff;
- DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = AIRABSORBGAINHF;
- }
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
- voice->Send[i].OutBuffer = NULL;
- else
- voice->Send[i].OutBuffer = Slot->WetBuffer;
- }
- /* Transform source to listener space (convert to head relative) */
- if(ALSource->HeadRelative == AL_FALSE)
- {
- const aluMatrixd *Matrix = &ALContext->Listener->Params.Matrix;
- /* Transform source vectors */
- Position = aluMatrixdVector(Matrix, &Position);
- Velocity = aluMatrixdVector(Matrix, &Velocity);
- Direction = aluMatrixdVector(Matrix, &Direction);
- }
- else
- {
- const aluVector *lvelocity = &ALContext->Listener->Params.Velocity;
- /* Offset the source velocity to be relative of the listener velocity */
- Velocity.v[0] += lvelocity->v[0];
- Velocity.v[1] += lvelocity->v[1];
- Velocity.v[2] += lvelocity->v[2];
- }
- aluNormalize(Direction.v);
- SourceToListener.v[0] = -Position.v[0];
- SourceToListener.v[1] = -Position.v[1];
- SourceToListener.v[2] = -Position.v[2];
- SourceToListener.v[3] = 0.0f;
- Distance = aluNormalize(SourceToListener.v);
- /* Calculate distance attenuation */
- ClampedDist = Distance;
- Attenuation = 1.0f;
- for(i = 0;i < NumSends;i++)
- RoomAttenuation[i] = 1.0f;
- switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
- ALContext->DistanceModel)
- {
- case InverseDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
- break;
- /*fall-through*/
- case InverseDistance:
- if(MinDist > 0.0f)
- {
- ALfloat dist = lerp(MinDist, ClampedDist, Rolloff);
- if(dist > 0.0f) Attenuation = MinDist / dist;
- for(i = 0;i < NumSends;i++)
- {
- dist = lerp(MinDist, ClampedDist, RoomRolloff[i]);
- if(dist > 0.0f) RoomAttenuation[i] = MinDist / dist;
- }
- }
- break;
- case LinearDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
- break;
- /*fall-through*/
- case LinearDistance:
- if(MaxDist != MinDist)
- {
- Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
- Attenuation = maxf(Attenuation, 0.0f);
- for(i = 0;i < NumSends;i++)
- {
- RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
- RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
- }
- }
- break;
- case ExponentDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
- break;
- /*fall-through*/
- case ExponentDistance:
- if(ClampedDist > 0.0f && MinDist > 0.0f)
- {
- Attenuation = powf(ClampedDist/MinDist, -Rolloff);
- for(i = 0;i < NumSends;i++)
- RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
- }
- break;
- case DisableDistance:
- ClampedDist = MinDist;
- break;
- }
- /* Source Gain + Attenuation */
- DryGain = SourceVolume * Attenuation;
- for(i = 0;i < NumSends;i++)
- WetGain[i] = SourceVolume * RoomAttenuation[i];
- /* Distance-based air absorption */
- if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
- {
- ALfloat meters = (ClampedDist-MinDist) * MetersPerUnit;
- DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
- for(i = 0;i < NumSends;i++)
- WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
- }
- if(WetGainAuto)
- {
- ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
- /* Apply a decay-time transformation to the wet path, based on the
- * attenuation of the dry path.
- *
- * Using the apparent distance, based on the distance attenuation, the
- * initial decay of the reverb effect is calculated and applied to the
- * wet path.
- */
- for(i = 0;i < NumSends;i++)
- {
- if(DecayDistance[i] > 0.0f)
- WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
- }
- }
- /* Calculate directional soundcones */
- Angle = RAD2DEG(acosf(aluDotproduct(&Direction, &SourceToListener)) * ConeScale) * 2.0f;
- if(Angle > InnerAngle && Angle <= OuterAngle)
- {
- ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
- ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
- ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
- }
- else if(Angle > OuterAngle)
- {
- ConeVolume = ALSource->OuterGain;
- ConeHF = ALSource->OuterGainHF;
- }
- else
- {
- ConeVolume = 1.0f;
- ConeHF = 1.0f;
- }
- DryGain *= ConeVolume;
- if(WetGainAuto)
- {
- for(i = 0;i < NumSends;i++)
- WetGain[i] *= ConeVolume;
- }
- if(DryGainHFAuto)
- DryGainHF *= ConeHF;
- if(WetGainHFAuto)
- {
- for(i = 0;i < NumSends;i++)
- WetGainHF[i] *= ConeHF;
- }
- /* Clamp to Min/Max Gain */
- DryGain = clampf(DryGain, MinVolume, MaxVolume);
- for(i = 0;i < NumSends;i++)
- WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
- /* Apply gain and frequency filters */
- DryGain *= ALSource->Direct.Gain * ListenerGain;
- DryGainHF *= ALSource->Direct.GainHF;
- DryGainLF *= ALSource->Direct.GainLF;
- for(i = 0;i < NumSends;i++)
- {
- WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
- WetGainHF[i] *= ALSource->Send[i].GainHF;
- WetGainLF[i] *= ALSource->Send[i].GainLF;
- }
- /* Calculate velocity-based doppler effect */
- if(DopplerFactor > 0.0f)
- {
- const aluVector *lvelocity = &ALContext->Listener->Params.Velocity;
- ALfloat VSS, VLS;
- if(SpeedOfSound < 1.0f)
- {
- DopplerFactor *= 1.0f/SpeedOfSound;
- SpeedOfSound = 1.0f;
- }
- VSS = aluDotproduct(&Velocity, &SourceToListener) * DopplerFactor;
- VLS = aluDotproduct(lvelocity, &SourceToListener) * DopplerFactor;
- Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
- clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
- }
- BufferListItem = ATOMIC_LOAD(&ALSource->queue);
- while(BufferListItem != NULL)
- {
- ALbuffer *ALBuffer;
- if((ALBuffer=BufferListItem->buffer) != NULL)
- {
- /* Calculate fixed-point stepping value, based on the pitch, buffer
- * frequency, and output frequency. */
- Pitch = Pitch * ALBuffer->Frequency / Frequency;
- if(Pitch > (ALfloat)MAX_PITCH)
- voice->Step = MAX_PITCH<<FRACTIONBITS;
- else
- voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
- BsincPrepare(voice->Step, &voice->SincState);
- break;
- }
- BufferListItem = BufferListItem->next;
- }
- if(Device->Hrtf_Mode == FullHrtf)
- {
- /* Full HRTF rendering. Skip the virtual channels and render to the
- * real outputs.
- */
- aluVector dir = {{ 0.0f, 0.0f, -1.0f, 0.0f }};
- ALfloat ev = 0.0f, az = 0.0f;
- ALfloat radius = ALSource->Radius;
- ALfloat dirfact = 1.0f;
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
- if(Distance > FLT_EPSILON)
- {
- dir.v[0] = -SourceToListener.v[0];
- dir.v[1] = -SourceToListener.v[1];
- dir.v[2] = -SourceToListener.v[2] * ZScale;
- /* Calculate elevation and azimuth only when the source is not at
- * the listener. This prevents +0 and -0 Z from producing
- * inconsistent panning. Also, clamp Y in case FP precision errors
- * cause it to land outside of -1..+1. */
- ev = asinf(clampf(dir.v[1], -1.0f, 1.0f));
- az = atan2f(dir.v[0], -dir.v[2]);
- }
- if(radius > 0.0f)
- {
- if(radius >= Distance)
- dirfact *= Distance / radius * 0.5f;
- else
- dirfact *= 1.0f - (asinf(radius / Distance) / F_PI);
- }
- /* Check to see if the HRIR is already moving. */
- if(voice->Direct.Moving)
- {
- ALfloat delta;
- delta = CalcFadeTime(voice->Direct.LastGain, DryGain,
- &voice->Direct.LastDir, &dir);
- /* If the delta is large enough, get the moving HRIR target
- * coefficients, target delays, steppping values, and counter.
- */
- if(delta > 0.000015f)
- {
- ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
- ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
- voice->Direct.Hrtf[0].Params.Coeffs, voice->Direct.Hrtf[0].Params.Delay,
- voice->Direct.Hrtf[0].Params.CoeffStep, voice->Direct.Hrtf[0].Params.DelayStep
- );
- voice->Direct.Counter = counter;
- voice->Direct.LastGain = DryGain;
- voice->Direct.LastDir = dir;
- }
- }
- else
- {
- /* Get the initial (static) HRIR coefficients and delays. */
- GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
- voice->Direct.Hrtf[0].Params.Coeffs,
- voice->Direct.Hrtf[0].Params.Delay);
- voice->Direct.Counter = 0;
- voice->Direct.Moving = AL_TRUE;
- voice->Direct.LastGain = DryGain;
- voice->Direct.LastDir = dir;
- }
- voice->IsHrtf = AL_TRUE;
- }
- else
- {
- /* Basic or no HRTF rendering. Use normal panning to the output. */
- MixGains *gains = voice->Direct.Gains[0];
- ALfloat dir[3] = { 0.0f, 0.0f, -1.0f };
- ALfloat radius = ALSource->Radius;
- ALfloat Target[MAX_OUTPUT_CHANNELS];
- /* Get the localized direction, and compute panned gains. */
- if(Distance > FLT_EPSILON)
- {
- dir[0] = -SourceToListener.v[0];
- dir[1] = -SourceToListener.v[1];
- dir[2] = -SourceToListener.v[2] * ZScale;
- }
- if(radius > 0.0f)
- {
- ALfloat dirfact;
- if(radius >= Distance)
- dirfact = Distance / radius * 0.5f;
- else
- dirfact = 1.0f - (asinf(radius / Distance) / F_PI);
- dir[0] *= dirfact;
- dir[1] *= dirfact;
- dir[2] *= dirfact;
- }
- ComputeDirectionalGains(Device, dir, DryGain, Target);
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = Target[j];
- UpdateDryStepping(&voice->Direct, 1, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_FALSE;
- }
- for(i = 0;i < NumSends;i++)
- {
- voice->Send[i].Gains[0].Target = WetGain[i];
- UpdateWetStepping(&voice->Send[i], 1, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
- }
- {
- ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
- ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
- DryGainHF = maxf(DryGainHF, 0.0001f);
- DryGainLF = maxf(DryGainLF, 0.0001f);
- voice->Direct.Filters[0].ActiveType = AF_None;
- if(DryGainHF != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
- if(DryGainLF != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf,
- DryGainHF, hfscale, calc_rcpQ_from_slope(DryGainHF, 0.75f)
- );
- ALfilterState_setParams(
- &voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf,
- DryGainLF, lfscale, calc_rcpQ_from_slope(DryGainLF, 0.75f)
- );
- }
- for(i = 0;i < NumSends;i++)
- {
- ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
- ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
- WetGainHF[i] = maxf(WetGainHF[i], 0.0001f);
- WetGainLF[i] = maxf(WetGainLF[i], 0.0001f);
- voice->Send[i].Filters[0].ActiveType = AF_None;
- if(WetGainHF[i] != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
- if(WetGainLF[i] != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf,
- WetGainHF[i], hfscale, calc_rcpQ_from_slope(WetGainHF[i], 0.75f)
- );
- ALfilterState_setParams(
- &voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf,
- WetGainLF[i], lfscale, calc_rcpQ_from_slope(WetGainLF[i], 0.75f)
- );
- }
- }
- void UpdateContextSources(ALCcontext *ctx)
- {
- ALvoice *voice, *voice_end;
- ALsource *source;
- if(ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE))
- {
- CalcListenerParams(ctx->Listener);
- voice = ctx->Voices;
- voice_end = voice + ctx->VoiceCount;
- for(;voice != voice_end;++voice)
- {
- if(!(source=voice->Source)) continue;
- if(source->state != AL_PLAYING && source->state != AL_PAUSED)
- voice->Source = NULL;
- else
- {
- ATOMIC_STORE(&source->NeedsUpdate, AL_FALSE);
- voice->Update(voice, source, ctx);
- }
- }
- }
- else
- {
- voice = ctx->Voices;
- voice_end = voice + ctx->VoiceCount;
- for(;voice != voice_end;++voice)
- {
- if(!(source=voice->Source)) continue;
- if(source->state != AL_PLAYING && source->state != AL_PAUSED)
- voice->Source = NULL;
- else if(ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE))
- voice->Update(voice, source, ctx);
- }
- }
- }
- /* Specialized function to clamp to [-1, +1] with only one branch. This also
- * converts NaN to 0. */
- static inline ALfloat aluClampf(ALfloat val)
- {
- if(fabsf(val) <= 1.0f) return val;
- return (ALfloat)((0.0f < val) - (val < 0.0f));
- }
- static inline ALfloat aluF2F(ALfloat val)
- { return val; }
- static inline ALint aluF2I(ALfloat val)
- {
- /* Floats only have a 24-bit mantissa, so [-16777215, +16777215] is the max
- * integer range normalized floats can be safely converted to.
- */
- return fastf2i(aluClampf(val)*16777215.0f)<<7;
- }
- static inline ALuint aluF2UI(ALfloat val)
- { return aluF2I(val)+2147483648u; }
- static inline ALshort aluF2S(ALfloat val)
- { return fastf2i(aluClampf(val)*32767.0f); }
- static inline ALushort aluF2US(ALfloat val)
- { return aluF2S(val)+32768; }
- static inline ALbyte aluF2B(ALfloat val)
- { return fastf2i(aluClampf(val)*127.0f); }
- static inline ALubyte aluF2UB(ALfloat val)
- { return aluF2B(val)+128; }
- #define DECL_TEMPLATE(T, func) \
- static void Write_##T(ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
- ALuint SamplesToDo, ALuint numchans) \
- { \
- ALuint i, j; \
- for(j = 0;j < numchans;j++) \
- { \
- const ALfloat *in = InBuffer[j]; \
- T *restrict out = (T*)OutBuffer + j; \
- for(i = 0;i < SamplesToDo;i++) \
- out[i*numchans] = func(in[i]); \
- } \
- }
- DECL_TEMPLATE(ALfloat, aluF2F)
- DECL_TEMPLATE(ALuint, aluF2UI)
- DECL_TEMPLATE(ALint, aluF2I)
- DECL_TEMPLATE(ALushort, aluF2US)
- DECL_TEMPLATE(ALshort, aluF2S)
- DECL_TEMPLATE(ALubyte, aluF2UB)
- DECL_TEMPLATE(ALbyte, aluF2B)
- #undef DECL_TEMPLATE
- ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
- {
- ALuint SamplesToDo;
- ALvoice *voice, *voice_end;
- ALeffectslot *slot;
- ALsource *source;
- ALCcontext *ctx;
- FPUCtl oldMode;
- ALuint i, c;
- SetMixerFPUMode(&oldMode);
- while(size > 0)
- {
- ALfloat (*OutBuffer)[BUFFERSIZE];
- ALuint OutChannels;
- IncrementRef(&device->MixCount);
- OutBuffer = device->DryBuffer;
- OutChannels = device->NumChannels;
- SamplesToDo = minu(size, BUFFERSIZE);
- for(c = 0;c < OutChannels;c++)
- memset(OutBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
- if(device->Hrtf)
- {
- /* Set OutBuffer/OutChannels to correspond to the actual output
- * with HRTF. Make sure to clear them too. */
- OutBuffer += OutChannels;
- OutChannels = 2;
- for(c = 0;c < OutChannels;c++)
- memset(OutBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
- }
- V0(device->Backend,lock)();
- if((slot=device->DefaultSlot) != NULL)
- {
- if(ATOMIC_EXCHANGE(ALenum, &slot->NeedsUpdate, AL_FALSE))
- V(slot->EffectState,update)(device, slot);
- memset(slot->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat));
- }
- ctx = ATOMIC_LOAD(&device->ContextList);
- while(ctx)
- {
- if(!ctx->DeferUpdates)
- {
- UpdateContextSources(ctx);
- #define UPDATE_SLOT(iter) do { \
- if(ATOMIC_EXCHANGE(ALenum, &(*iter)->NeedsUpdate, AL_FALSE)) \
- V((*iter)->EffectState,update)(device, *iter); \
- memset((*iter)->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat)); \
- } while(0)
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, UPDATE_SLOT);
- #undef UPDATE_SLOT
- }
- else
- {
- #define CLEAR_WET_BUFFER(iter) memset((*iter)->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat))
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, CLEAR_WET_BUFFER);
- #undef CLEAR_WET_BUFFER
- }
- /* source processing */
- voice = ctx->Voices;
- voice_end = voice + ctx->VoiceCount;
- for(;voice != voice_end;++voice)
- {
- source = voice->Source;
- if(source && source->state == AL_PLAYING)
- MixSource(voice, source, device, SamplesToDo);
- }
- /* effect slot processing */
- #define PROCESS_SLOT(iter) V((*iter)->EffectState,process)( \
- SamplesToDo, (*iter)->WetBuffer[0], device->DryBuffer, device->NumChannels \
- );
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, PROCESS_SLOT);
- #undef PROCESS_SLOT
- ctx = ctx->next;
- }
- if((slot=device->DefaultSlot) != NULL)
- V(slot->EffectState,process)(
- SamplesToDo, slot->WetBuffer[0], device->DryBuffer, device->NumChannels
- );
- /* Increment the clock time. Every second's worth of samples is
- * converted and added to clock base so that large sample counts don't
- * overflow during conversion. This also guarantees an exact, stable
- * conversion. */
- device->SamplesDone += SamplesToDo;
- device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
- device->SamplesDone %= device->Frequency;
- V0(device->Backend,unlock)();
- if(device->Hrtf)
- {
- HrtfMixerFunc HrtfMix = SelectHrtfMixer();
- ALuint irsize = GetHrtfIrSize(device->Hrtf);
- for(c = 0;c < device->NumChannels;c++)
- HrtfMix(OutBuffer, device->DryBuffer[c], 0, device->Hrtf_Offset,
- 0, irsize, &device->Hrtf_Params[c], &device->Hrtf_State[c],
- SamplesToDo
- );
- device->Hrtf_Offset += SamplesToDo;
- }
- else if(device->Bs2b)
- {
- /* Apply binaural/crossfeed filter */
- for(i = 0;i < SamplesToDo;i++)
- {
- float samples[2];
- samples[0] = device->DryBuffer[0][i];
- samples[1] = device->DryBuffer[1][i];
- bs2b_cross_feed(device->Bs2b, samples);
- device->DryBuffer[0][i] = samples[0];
- device->DryBuffer[1][i] = samples[1];
- }
- }
- if(buffer)
- {
- #define WRITE(T, a, b, c, d) do { \
- Write_##T((a), (b), (c), (d)); \
- buffer = (T*)buffer + (c)*(d); \
- } while(0)
- switch(device->FmtType)
- {
- case DevFmtByte:
- WRITE(ALbyte, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUByte:
- WRITE(ALubyte, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtShort:
- WRITE(ALshort, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUShort:
- WRITE(ALushort, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtInt:
- WRITE(ALint, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUInt:
- WRITE(ALuint, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtFloat:
- WRITE(ALfloat, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- }
- #undef WRITE
- }
- size -= SamplesToDo;
- IncrementRef(&device->MixCount);
- }
- RestoreFPUMode(&oldMode);
- }
- ALvoid aluHandleDisconnect(ALCdevice *device)
- {
- ALCcontext *Context;
- device->Connected = ALC_FALSE;
- Context = ATOMIC_LOAD(&device->ContextList);
- while(Context)
- {
- ALvoice *voice, *voice_end;
- voice = Context->Voices;
- voice_end = voice + Context->VoiceCount;
- while(voice != voice_end)
- {
- ALsource *source = voice->Source;
- voice->Source = NULL;
- if(source && source->state == AL_PLAYING)
- {
- source->state = AL_STOPPED;
- ATOMIC_STORE(&source->current_buffer, NULL);
- source->position = 0;
- source->position_fraction = 0;
- }
- voice++;
- }
- Context->VoiceCount = 0;
- Context = Context->next;
- }
- }
|