| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- #include "config.h"
- #include <arm_neon.h>
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alu.h"
- #include "hrtf.h"
- #include "mixer_defs.h"
- const ALfloat *Resample_lerp32_Neon(const InterpState* UNUSED(state),
- const ALfloat *restrict src, ALsizei frac, ALint increment,
- ALfloat *restrict dst, ALsizei numsamples)
- {
- const int32x4_t increment4 = vdupq_n_s32(increment*4);
- const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
- const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
- alignas(16) ALint pos_[4];
- alignas(16) ALsizei frac_[4];
- int32x4_t pos4;
- int32x4_t frac4;
- ALsizei i;
- InitiatePositionArrays(frac, increment, frac_, pos_, 4);
- frac4 = vld1q_s32(frac_);
- pos4 = vld1q_s32(pos_);
- for(i = 0;numsamples-i > 3;i += 4)
- {
- const float32x4_t val1 = (float32x4_t){src[pos_[0]], src[pos_[1]], src[pos_[2]], src[pos_[3]]};
- const float32x4_t val2 = (float32x4_t){src[pos_[0]+1], src[pos_[1]+1], src[pos_[2]+1], src[pos_[3]+1]};
- /* val1 + (val2-val1)*mu */
- const float32x4_t r0 = vsubq_f32(val2, val1);
- const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
- const float32x4_t out = vmlaq_f32(val1, mu, r0);
- vst1q_f32(&dst[i], out);
- frac4 = vaddq_s32(frac4, increment4);
- pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
- frac4 = vandq_s32(frac4, fracMask4);
- vst1q_s32(pos_, pos4);
- }
- if(i < numsamples)
- {
- /* NOTE: These four elements represent the position *after* the last
- * four samples, so the lowest element is the next position to
- * resample.
- */
- ALint pos = pos_[0];
- frac = vgetq_lane_s32(frac4, 0);
- do {
- dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
- frac += increment;
- pos += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- } while(++i < numsamples);
- }
- return dst;
- }
- const ALfloat *Resample_fir4_32_Neon(const InterpState* UNUSED(state),
- const ALfloat *restrict src, ALsizei frac, ALint increment,
- ALfloat *restrict dst, ALsizei numsamples)
- {
- const int32x4_t increment4 = vdupq_n_s32(increment*4);
- const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
- alignas(16) ALint pos_[4];
- alignas(16) ALsizei frac_[4];
- int32x4_t pos4;
- int32x4_t frac4;
- ALsizei i;
- InitiatePositionArrays(frac, increment, frac_, pos_, 4);
- frac4 = vld1q_s32(frac_);
- pos4 = vld1q_s32(pos_);
- --src;
- for(i = 0;numsamples-i > 3;i += 4)
- {
- const float32x4_t val0 = vld1q_f32(&src[pos_[0]]);
- const float32x4_t val1 = vld1q_f32(&src[pos_[1]]);
- const float32x4_t val2 = vld1q_f32(&src[pos_[2]]);
- const float32x4_t val3 = vld1q_f32(&src[pos_[3]]);
- float32x4_t k0 = vld1q_f32(sinc4Tab[frac_[0]]);
- float32x4_t k1 = vld1q_f32(sinc4Tab[frac_[1]]);
- float32x4_t k2 = vld1q_f32(sinc4Tab[frac_[2]]);
- float32x4_t k3 = vld1q_f32(sinc4Tab[frac_[3]]);
- float32x4_t out;
- k0 = vmulq_f32(k0, val0);
- k1 = vmulq_f32(k1, val1);
- k2 = vmulq_f32(k2, val2);
- k3 = vmulq_f32(k3, val3);
- k0 = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
- vpadd_f32(vget_low_f32(k1), vget_high_f32(k1)));
- k2 = vcombine_f32(vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)),
- vpadd_f32(vget_low_f32(k3), vget_high_f32(k3)));
- out = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
- vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)));
- vst1q_f32(&dst[i], out);
- frac4 = vaddq_s32(frac4, increment4);
- pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
- frac4 = vandq_s32(frac4, fracMask4);
- vst1q_s32(pos_, pos4);
- vst1q_s32(frac_, frac4);
- }
- if(i < numsamples)
- {
- /* NOTE: These four elements represent the position *after* the last
- * four samples, so the lowest element is the next position to
- * resample.
- */
- ALint pos = pos_[0];
- frac = frac_[0];
- do {
- dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
- frac += increment;
- pos += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- } while(++i < numsamples);
- }
- return dst;
- }
- const ALfloat *Resample_bsinc32_Neon(const InterpState *state,
- const ALfloat *restrict src, ALsizei frac, ALint increment,
- ALfloat *restrict dst, ALsizei dstlen)
- {
- const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
- const ALsizei m = state->bsinc.m;
- const ALfloat *fil, *scd, *phd, *spd;
- ALsizei pi, i, j;
- float32x4_t r4;
- ALfloat pf;
- src += state->bsinc.l;
- for(i = 0;i < dstlen;i++)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- pi = frac >> FRAC_PHASE_BITDIFF;
- pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
- #undef FRAC_PHASE_BITDIFF
- fil = ASSUME_ALIGNED(state->bsinc.coeffs[pi].filter, 16);
- scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16);
- phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16);
- spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16);
- // Apply the scale and phase interpolated filter.
- r4 = vdupq_n_f32(0.0f);
- {
- const float32x4_t pf4 = vdupq_n_f32(pf);
- for(j = 0;j < m;j+=4)
- {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const float32x4_t f4 = vmlaq_f32(vmlaq_f32(vld1q_f32(&fil[j]),
- sf4, vld1q_f32(&scd[j])),
- pf4, vmlaq_f32(vld1q_f32(&phd[j]),
- sf4, vld1q_f32(&spd[j])
- )
- );
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
- }
- }
- r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
- vrev64_f32(vget_low_f32(r4))));
- dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
- static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
- const ALsizei IrSize,
- const ALfloat (*restrict Coeffs)[2],
- ALfloat left, ALfloat right)
- {
- ALsizei c;
- float32x4_t leftright4;
- {
- float32x2_t leftright2 = vdup_n_f32(0.0);
- leftright2 = vset_lane_f32(left, leftright2, 0);
- leftright2 = vset_lane_f32(right, leftright2, 1);
- leftright4 = vcombine_f32(leftright2, leftright2);
- }
- Values = ASSUME_ALIGNED(Values, 16);
- Coeffs = ASSUME_ALIGNED(Coeffs, 16);
- for(c = 0;c < IrSize;c += 2)
- {
- const ALsizei o0 = (Offset+c)&HRIR_MASK;
- const ALsizei o1 = (o0+1)&HRIR_MASK;
- float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
- vld1_f32((float32_t*)&Values[o1][0]));
- float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
- vals = vmlaq_f32(vals, coefs, leftright4);
- vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
- vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
- }
- }
- #define MixHrtf MixHrtf_Neon
- #define MixHrtfBlend MixHrtfBlend_Neon
- #define MixDirectHrtf MixDirectHrtf_Neon
- #include "mixer_inc.c"
- #undef MixHrtf
- void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
- ALsizei BufferSize)
- {
- ALfloat gain, delta, step;
- float32x4_t gain4;
- ALsizei c;
- data = ASSUME_ALIGNED(data, 16);
- OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
- delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
- for(c = 0;c < OutChans;c++)
- {
- ALsizei pos = 0;
- gain = CurrentGains[c];
- step = (TargetGains[c] - gain) * delta;
- if(fabsf(step) > FLT_EPSILON)
- {
- ALsizei minsize = mini(BufferSize, Counter);
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(minsize-pos > 3)
- {
- float32x4_t step4;
- gain4 = vsetq_lane_f32(gain, gain4, 0);
- gain4 = vsetq_lane_f32(gain + step, gain4, 1);
- gain4 = vsetq_lane_f32(gain + step + step, gain4, 2);
- gain4 = vsetq_lane_f32(gain + step + step + step, gain4, 3);
- step4 = vdupq_n_f32(step + step + step + step);
- do {
- const float32x4_t val4 = vld1q_f32(&data[pos]);
- float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- gain4 = vaddq_f32(gain4, step4);
- vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
- pos += 4;
- } while(minsize-pos > 3);
- /* NOTE: gain4 now represents the next four gains after the
- * last four mixed samples, so the lowest element represents
- * the next gain to apply.
- */
- gain = vgetq_lane_f32(gain4, 0);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(;pos < minsize;pos++)
- {
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- gain += step;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- CurrentGains[c] = gain;
- /* Mix until pos is aligned with 4 or the mix is done. */
- minsize = mini(BufferSize, (pos+3)&~3);
- for(;pos < minsize;pos++)
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- }
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- gain4 = vdupq_n_f32(gain);
- for(;BufferSize-pos > 3;pos += 4)
- {
- const float32x4_t val4 = vld1q_f32(&data[pos]);
- float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- }
- }
- void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
- {
- float32x4_t gain4;
- ALsizei c;
- data = ASSUME_ALIGNED(data, 16);
- OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
- for(c = 0;c < InChans;c++)
- {
- ALsizei pos = 0;
- ALfloat gain = Gains[c];
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- gain4 = vdupq_n_f32(gain);
- for(;BufferSize-pos > 3;pos += 4)
- {
- const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]);
- float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&OutBuffer[pos], dry4);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[pos] += data[c][InPos+pos]*gain;
- }
- }
|