flanger.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /**
  2. * OpenAL cross platform audio library
  3. * Copyright (C) 2013 by Mike Gorchak
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Library General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Library General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Library General Public
  15. * License along with this library; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. * Or go to http://www.gnu.org/copyleft/lgpl.html
  19. */
  20. #include "config.h"
  21. #include <math.h>
  22. #include <stdlib.h>
  23. #include "alMain.h"
  24. #include "alFilter.h"
  25. #include "alAuxEffectSlot.h"
  26. #include "alError.h"
  27. #include "alu.h"
  28. enum FlangerWaveForm {
  29. FWF_Triangle = AL_FLANGER_WAVEFORM_TRIANGLE,
  30. FWF_Sinusoid = AL_FLANGER_WAVEFORM_SINUSOID
  31. };
  32. typedef struct ALflangerState {
  33. DERIVE_FROM_TYPE(ALeffectState);
  34. ALfloat *SampleBuffer[2];
  35. ALuint BufferLength;
  36. ALuint offset;
  37. ALuint lfo_range;
  38. ALfloat lfo_scale;
  39. ALint lfo_disp;
  40. /* Gains for left and right sides */
  41. ALfloat Gain[2][MAX_OUTPUT_CHANNELS];
  42. /* effect parameters */
  43. enum FlangerWaveForm waveform;
  44. ALint delay;
  45. ALfloat depth;
  46. ALfloat feedback;
  47. } ALflangerState;
  48. static ALvoid ALflangerState_Destruct(ALflangerState *state)
  49. {
  50. free(state->SampleBuffer[0]);
  51. state->SampleBuffer[0] = NULL;
  52. state->SampleBuffer[1] = NULL;
  53. }
  54. static ALboolean ALflangerState_deviceUpdate(ALflangerState *state, ALCdevice *Device)
  55. {
  56. ALuint maxlen;
  57. ALuint it;
  58. maxlen = fastf2u(AL_FLANGER_MAX_DELAY * 3.0f * Device->Frequency) + 1;
  59. maxlen = NextPowerOf2(maxlen);
  60. if(maxlen != state->BufferLength)
  61. {
  62. void *temp;
  63. temp = realloc(state->SampleBuffer[0], maxlen * sizeof(ALfloat) * 2);
  64. if(!temp) return AL_FALSE;
  65. state->SampleBuffer[0] = temp;
  66. state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen;
  67. state->BufferLength = maxlen;
  68. }
  69. for(it = 0;it < state->BufferLength;it++)
  70. {
  71. state->SampleBuffer[0][it] = 0.0f;
  72. state->SampleBuffer[1][it] = 0.0f;
  73. }
  74. return AL_TRUE;
  75. }
  76. static ALvoid ALflangerState_update(ALflangerState *state, ALCdevice *Device, const ALeffectslot *Slot)
  77. {
  78. static const ALfloat left_dir[3] = { -1.0f, 0.0f, 0.0f };
  79. static const ALfloat right_dir[3] = { 1.0f, 0.0f, 0.0f };
  80. ALfloat frequency = (ALfloat)Device->Frequency;
  81. ALfloat rate;
  82. ALint phase;
  83. switch(Slot->EffectProps.Flanger.Waveform)
  84. {
  85. case AL_FLANGER_WAVEFORM_TRIANGLE:
  86. state->waveform = FWF_Triangle;
  87. break;
  88. case AL_FLANGER_WAVEFORM_SINUSOID:
  89. state->waveform = FWF_Sinusoid;
  90. break;
  91. }
  92. state->depth = Slot->EffectProps.Flanger.Depth;
  93. state->feedback = Slot->EffectProps.Flanger.Feedback;
  94. state->delay = fastf2i(Slot->EffectProps.Flanger.Delay * frequency);
  95. /* Gains for left and right sides */
  96. ComputeDirectionalGains(Device, left_dir, Slot->Gain, state->Gain[0]);
  97. ComputeDirectionalGains(Device, right_dir, Slot->Gain, state->Gain[1]);
  98. phase = Slot->EffectProps.Flanger.Phase;
  99. rate = Slot->EffectProps.Flanger.Rate;
  100. if(!(rate > 0.0f))
  101. {
  102. state->lfo_scale = 0.0f;
  103. state->lfo_range = 1;
  104. state->lfo_disp = 0;
  105. }
  106. else
  107. {
  108. /* Calculate LFO coefficient */
  109. state->lfo_range = fastf2u(frequency/rate + 0.5f);
  110. switch(state->waveform)
  111. {
  112. case FWF_Triangle:
  113. state->lfo_scale = 4.0f / state->lfo_range;
  114. break;
  115. case FWF_Sinusoid:
  116. state->lfo_scale = F_TAU / state->lfo_range;
  117. break;
  118. }
  119. /* Calculate lfo phase displacement */
  120. state->lfo_disp = fastf2i(state->lfo_range * (phase/360.0f));
  121. }
  122. }
  123. static inline void Triangle(ALint *delay_left, ALint *delay_right, ALuint offset, const ALflangerState *state)
  124. {
  125. ALfloat lfo_value;
  126. lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
  127. lfo_value *= state->depth * state->delay;
  128. *delay_left = fastf2i(lfo_value) + state->delay;
  129. offset += state->lfo_disp;
  130. lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
  131. lfo_value *= state->depth * state->delay;
  132. *delay_right = fastf2i(lfo_value) + state->delay;
  133. }
  134. static inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALuint offset, const ALflangerState *state)
  135. {
  136. ALfloat lfo_value;
  137. lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
  138. lfo_value *= state->depth * state->delay;
  139. *delay_left = fastf2i(lfo_value) + state->delay;
  140. offset += state->lfo_disp;
  141. lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
  142. lfo_value *= state->depth * state->delay;
  143. *delay_right = fastf2i(lfo_value) + state->delay;
  144. }
  145. #define DECL_TEMPLATE(Func) \
  146. static void Process##Func(ALflangerState *state, const ALuint SamplesToDo, \
  147. const ALfloat *restrict SamplesIn, ALfloat (*restrict out)[2]) \
  148. { \
  149. const ALuint bufmask = state->BufferLength-1; \
  150. ALfloat *restrict leftbuf = state->SampleBuffer[0]; \
  151. ALfloat *restrict rightbuf = state->SampleBuffer[1]; \
  152. ALuint offset = state->offset; \
  153. const ALfloat feedback = state->feedback; \
  154. ALuint it; \
  155. \
  156. for(it = 0;it < SamplesToDo;it++) \
  157. { \
  158. ALint delay_left, delay_right; \
  159. Func(&delay_left, &delay_right, offset, state); \
  160. \
  161. out[it][0] = leftbuf[(offset-delay_left)&bufmask]; \
  162. leftbuf[offset&bufmask] = (out[it][0]+SamplesIn[it]) * feedback; \
  163. \
  164. out[it][1] = rightbuf[(offset-delay_right)&bufmask]; \
  165. rightbuf[offset&bufmask] = (out[it][1]+SamplesIn[it]) * feedback; \
  166. \
  167. offset++; \
  168. } \
  169. state->offset = offset; \
  170. }
  171. DECL_TEMPLATE(Triangle)
  172. DECL_TEMPLATE(Sinusoid)
  173. #undef DECL_TEMPLATE
  174. static ALvoid ALflangerState_process(ALflangerState *state, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
  175. {
  176. ALuint it, kt;
  177. ALuint base;
  178. for(base = 0;base < SamplesToDo;)
  179. {
  180. ALfloat temps[128][2];
  181. ALuint td = minu(128, SamplesToDo-base);
  182. switch(state->waveform)
  183. {
  184. case FWF_Triangle:
  185. ProcessTriangle(state, td, SamplesIn+base, temps);
  186. break;
  187. case FWF_Sinusoid:
  188. ProcessSinusoid(state, td, SamplesIn+base, temps);
  189. break;
  190. }
  191. for(kt = 0;kt < NumChannels;kt++)
  192. {
  193. ALfloat gain = state->Gain[0][kt];
  194. if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
  195. {
  196. for(it = 0;it < td;it++)
  197. SamplesOut[kt][it+base] += temps[it][0] * gain;
  198. }
  199. gain = state->Gain[1][kt];
  200. if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
  201. {
  202. for(it = 0;it < td;it++)
  203. SamplesOut[kt][it+base] += temps[it][1] * gain;
  204. }
  205. }
  206. base += td;
  207. }
  208. }
  209. DECLARE_DEFAULT_ALLOCATORS(ALflangerState)
  210. DEFINE_ALEFFECTSTATE_VTABLE(ALflangerState);
  211. typedef struct ALflangerStateFactory {
  212. DERIVE_FROM_TYPE(ALeffectStateFactory);
  213. } ALflangerStateFactory;
  214. ALeffectState *ALflangerStateFactory_create(ALflangerStateFactory *UNUSED(factory))
  215. {
  216. ALflangerState *state;
  217. state = ALflangerState_New(sizeof(*state));
  218. if(!state) return NULL;
  219. SET_VTABLE2(ALflangerState, ALeffectState, state);
  220. state->BufferLength = 0;
  221. state->SampleBuffer[0] = NULL;
  222. state->SampleBuffer[1] = NULL;
  223. state->offset = 0;
  224. state->lfo_range = 1;
  225. state->waveform = FWF_Triangle;
  226. return STATIC_CAST(ALeffectState, state);
  227. }
  228. DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALflangerStateFactory);
  229. ALeffectStateFactory *ALflangerStateFactory_getFactory(void)
  230. {
  231. static ALflangerStateFactory FlangerFactory = { { GET_VTABLE2(ALflangerStateFactory, ALeffectStateFactory) } };
  232. return STATIC_CAST(ALeffectStateFactory, &FlangerFactory);
  233. }
  234. void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
  235. {
  236. ALeffectProps *props = &effect->Props;
  237. switch(param)
  238. {
  239. case AL_FLANGER_WAVEFORM:
  240. if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
  241. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  242. props->Flanger.Waveform = val;
  243. break;
  244. case AL_FLANGER_PHASE:
  245. if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
  246. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  247. props->Flanger.Phase = val;
  248. break;
  249. default:
  250. SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
  251. }
  252. }
  253. void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
  254. {
  255. ALflanger_setParami(effect, context, param, vals[0]);
  256. }
  257. void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
  258. {
  259. ALeffectProps *props = &effect->Props;
  260. switch(param)
  261. {
  262. case AL_FLANGER_RATE:
  263. if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
  264. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  265. props->Flanger.Rate = val;
  266. break;
  267. case AL_FLANGER_DEPTH:
  268. if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
  269. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  270. props->Flanger.Depth = val;
  271. break;
  272. case AL_FLANGER_FEEDBACK:
  273. if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
  274. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  275. props->Flanger.Feedback = val;
  276. break;
  277. case AL_FLANGER_DELAY:
  278. if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
  279. SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
  280. props->Flanger.Delay = val;
  281. break;
  282. default:
  283. SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
  284. }
  285. }
  286. void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
  287. {
  288. ALflanger_setParamf(effect, context, param, vals[0]);
  289. }
  290. void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
  291. {
  292. const ALeffectProps *props = &effect->Props;
  293. switch(param)
  294. {
  295. case AL_FLANGER_WAVEFORM:
  296. *val = props->Flanger.Waveform;
  297. break;
  298. case AL_FLANGER_PHASE:
  299. *val = props->Flanger.Phase;
  300. break;
  301. default:
  302. SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
  303. }
  304. }
  305. void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
  306. {
  307. ALflanger_getParami(effect, context, param, vals);
  308. }
  309. void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
  310. {
  311. const ALeffectProps *props = &effect->Props;
  312. switch(param)
  313. {
  314. case AL_FLANGER_RATE:
  315. *val = props->Flanger.Rate;
  316. break;
  317. case AL_FLANGER_DEPTH:
  318. *val = props->Flanger.Depth;
  319. break;
  320. case AL_FLANGER_FEEDBACK:
  321. *val = props->Flanger.Feedback;
  322. break;
  323. case AL_FLANGER_DELAY:
  324. *val = props->Flanger.Delay;
  325. break;
  326. default:
  327. SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
  328. }
  329. }
  330. void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
  331. {
  332. ALflanger_getParamf(effect, context, param, vals);
  333. }
  334. DEFINE_ALEFFECT_VTABLE(ALflanger);