hrtfbase.h 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. #ifndef CORE_MIXER_HRTFBASE_H
  2. #define CORE_MIXER_HRTFBASE_H
  3. #include <algorithm>
  4. #include <cmath>
  5. #include "defs.h"
  6. #include "hrtfdefs.h"
  7. #include "opthelpers.h"
  8. using uint = unsigned int;
  9. using ApplyCoeffsT = void(const al::span<float2> Values, const size_t irSize,
  10. const ConstHrirSpan Coeffs, const float left, const float right);
  11. template<ApplyCoeffsT ApplyCoeffs>
  12. inline void MixHrtfBase(const al::span<const float> InSamples, const al::span<float2> AccumSamples,
  13. const size_t IrSize, const MixHrtfFilter *hrtfparams, const size_t SamplesToDo)
  14. {
  15. ASSUME(SamplesToDo > 0);
  16. ASSUME(SamplesToDo <= BufferLineSize);
  17. ASSUME(IrSize <= HrirLength);
  18. const ConstHrirSpan Coeffs{hrtfparams->Coeffs};
  19. const float gainstep{hrtfparams->GainStep};
  20. const float gain{hrtfparams->Gain};
  21. size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]};
  22. size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]};
  23. float stepcount{0.0f};
  24. for(size_t i{0u};i < SamplesToDo;++i)
  25. {
  26. const float g{gain + gainstep*stepcount};
  27. const float left{InSamples[ldelay++] * g};
  28. const float right{InSamples[rdelay++] * g};
  29. ApplyCoeffs(AccumSamples.subspan(i), IrSize, Coeffs, left, right);
  30. stepcount += 1.0f;
  31. }
  32. }
  33. template<ApplyCoeffsT ApplyCoeffs>
  34. inline void MixHrtfBlendBase(const al::span<const float> InSamples,
  35. const al::span<float2> AccumSamples, const size_t IrSize, const HrtfFilter *oldparams,
  36. const MixHrtfFilter *newparams, const size_t SamplesToDo)
  37. {
  38. ASSUME(SamplesToDo > 0);
  39. ASSUME(SamplesToDo <= BufferLineSize);
  40. ASSUME(IrSize <= HrirLength);
  41. const ConstHrirSpan OldCoeffs{oldparams->Coeffs};
  42. const float oldGainStep{oldparams->Gain / static_cast<float>(SamplesToDo)};
  43. const ConstHrirSpan NewCoeffs{newparams->Coeffs};
  44. const float newGainStep{newparams->GainStep};
  45. if(oldparams->Gain > GainSilenceThreshold) LIKELY
  46. {
  47. size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]};
  48. size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]};
  49. auto stepcount = static_cast<float>(SamplesToDo);
  50. for(size_t i{0u};i < SamplesToDo;++i)
  51. {
  52. const float g{oldGainStep*stepcount};
  53. const float left{InSamples[ldelay++] * g};
  54. const float right{InSamples[rdelay++] * g};
  55. ApplyCoeffs(AccumSamples.subspan(i), IrSize, OldCoeffs, left, right);
  56. stepcount -= 1.0f;
  57. }
  58. }
  59. if(newGainStep*static_cast<float>(SamplesToDo) > GainSilenceThreshold) LIKELY
  60. {
  61. size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]};
  62. size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]};
  63. float stepcount{1.0f};
  64. for(size_t i{1u};i < SamplesToDo;++i)
  65. {
  66. const float g{newGainStep*stepcount};
  67. const float left{InSamples[ldelay++] * g};
  68. const float right{InSamples[rdelay++] * g};
  69. ApplyCoeffs(AccumSamples.subspan(i), IrSize, NewCoeffs, left, right);
  70. stepcount += 1.0f;
  71. }
  72. }
  73. }
  74. template<ApplyCoeffsT ApplyCoeffs>
  75. inline void MixDirectHrtfBase(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
  76. const al::span<const FloatBufferLine> InSamples, const al::span<float2> AccumSamples,
  77. const al::span<float,BufferLineSize> TempBuf, const al::span<HrtfChannelState> ChannelState,
  78. const size_t IrSize, const size_t SamplesToDo)
  79. {
  80. ASSUME(SamplesToDo > 0);
  81. ASSUME(SamplesToDo <= BufferLineSize);
  82. ASSUME(IrSize <= HrirLength);
  83. assert(ChannelState.size() == InSamples.size());
  84. auto ChanState = ChannelState.begin();
  85. for(const FloatBufferLine &input : InSamples)
  86. {
  87. /* For dual-band processing, the signal needs extra scaling applied to
  88. * the high frequency response. The band-splitter applies this scaling
  89. * with a consistent phase shift regardless of the scale amount.
  90. */
  91. ChanState->mSplitter.processHfScale(al::span{input}.first(SamplesToDo), TempBuf,
  92. ChanState->mHfScale);
  93. /* Now apply the HRIR coefficients to this channel. */
  94. const ConstHrirSpan Coeffs{ChanState->mCoeffs};
  95. for(size_t i{0u};i < SamplesToDo;++i)
  96. {
  97. const float insample{TempBuf[i]};
  98. ApplyCoeffs(AccumSamples.subspan(i), IrSize, Coeffs, insample, insample);
  99. }
  100. ++ChanState;
  101. }
  102. /* Add the HRTF signal to the existing "direct" signal. */
  103. const auto left = al::span{al::assume_aligned<16>(LeftOut.data()), SamplesToDo};
  104. std::transform(left.cbegin(), left.cend(), AccumSamples.cbegin(), left.begin(),
  105. [](const float sample, const float2 &accum) noexcept -> float
  106. { return sample + accum[0]; });
  107. const auto right = al::span{al::assume_aligned<16>(RightOut.data()), SamplesToDo};
  108. std::transform(right.cbegin(), right.cend(), AccumSamples.cbegin(), right.begin(),
  109. [](const float sample, const float2 &accum) noexcept -> float
  110. { return sample + accum[1]; });
  111. /* Copy the new in-progress accumulation values to the front and clear the
  112. * following samples for the next mix.
  113. */
  114. const auto accum_inprog = AccumSamples.subspan(SamplesToDo, HrirLength);
  115. auto accum_iter = std::copy(accum_inprog.cbegin(), accum_inprog.cend(), AccumSamples.begin());
  116. std::fill_n(accum_iter, SamplesToDo, float2{});
  117. }
  118. #endif /* CORE_MIXER_HRTFBASE_H */