| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- #ifndef CORE_MIXER_HRTFBASE_H
- #define CORE_MIXER_HRTFBASE_H
- #include <algorithm>
- #include <cmath>
- #include "defs.h"
- #include "hrtfdefs.h"
- #include "opthelpers.h"
- using uint = unsigned int;
- using ApplyCoeffsT = void(const al::span<float2> Values, const size_t irSize,
- const ConstHrirSpan Coeffs, const float left, const float right);
- template<ApplyCoeffsT ApplyCoeffs>
- inline void MixHrtfBase(const al::span<const float> InSamples, const al::span<float2> AccumSamples,
- const size_t IrSize, const MixHrtfFilter *hrtfparams, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
- ASSUME(SamplesToDo <= BufferLineSize);
- ASSUME(IrSize <= HrirLength);
- const ConstHrirSpan Coeffs{hrtfparams->Coeffs};
- const float gainstep{hrtfparams->GainStep};
- const float gain{hrtfparams->Gain};
- size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]};
- size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]};
- float stepcount{0.0f};
- for(size_t i{0u};i < SamplesToDo;++i)
- {
- const float g{gain + gainstep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples.subspan(i), IrSize, Coeffs, left, right);
- stepcount += 1.0f;
- }
- }
- template<ApplyCoeffsT ApplyCoeffs>
- inline void MixHrtfBlendBase(const al::span<const float> InSamples,
- const al::span<float2> AccumSamples, const size_t IrSize, const HrtfFilter *oldparams,
- const MixHrtfFilter *newparams, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
- ASSUME(SamplesToDo <= BufferLineSize);
- ASSUME(IrSize <= HrirLength);
- const ConstHrirSpan OldCoeffs{oldparams->Coeffs};
- const float oldGainStep{oldparams->Gain / static_cast<float>(SamplesToDo)};
- const ConstHrirSpan NewCoeffs{newparams->Coeffs};
- const float newGainStep{newparams->GainStep};
- if(oldparams->Gain > GainSilenceThreshold) LIKELY
- {
- size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]};
- size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]};
- auto stepcount = static_cast<float>(SamplesToDo);
- for(size_t i{0u};i < SamplesToDo;++i)
- {
- const float g{oldGainStep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples.subspan(i), IrSize, OldCoeffs, left, right);
- stepcount -= 1.0f;
- }
- }
- if(newGainStep*static_cast<float>(SamplesToDo) > GainSilenceThreshold) LIKELY
- {
- size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]};
- size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]};
- float stepcount{1.0f};
- for(size_t i{1u};i < SamplesToDo;++i)
- {
- const float g{newGainStep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples.subspan(i), IrSize, NewCoeffs, left, right);
- stepcount += 1.0f;
- }
- }
- }
- template<ApplyCoeffsT ApplyCoeffs>
- inline void MixDirectHrtfBase(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
- const al::span<const FloatBufferLine> InSamples, const al::span<float2> AccumSamples,
- const al::span<float,BufferLineSize> TempBuf, const al::span<HrtfChannelState> ChannelState,
- const size_t IrSize, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
- ASSUME(SamplesToDo <= BufferLineSize);
- ASSUME(IrSize <= HrirLength);
- assert(ChannelState.size() == InSamples.size());
- auto ChanState = ChannelState.begin();
- for(const FloatBufferLine &input : InSamples)
- {
- /* For dual-band processing, the signal needs extra scaling applied to
- * the high frequency response. The band-splitter applies this scaling
- * with a consistent phase shift regardless of the scale amount.
- */
- ChanState->mSplitter.processHfScale(al::span{input}.first(SamplesToDo), TempBuf,
- ChanState->mHfScale);
- /* Now apply the HRIR coefficients to this channel. */
- const ConstHrirSpan Coeffs{ChanState->mCoeffs};
- for(size_t i{0u};i < SamplesToDo;++i)
- {
- const float insample{TempBuf[i]};
- ApplyCoeffs(AccumSamples.subspan(i), IrSize, Coeffs, insample, insample);
- }
- ++ChanState;
- }
- /* Add the HRTF signal to the existing "direct" signal. */
- const auto left = al::span{al::assume_aligned<16>(LeftOut.data()), SamplesToDo};
- std::transform(left.cbegin(), left.cend(), AccumSamples.cbegin(), left.begin(),
- [](const float sample, const float2 &accum) noexcept -> float
- { return sample + accum[0]; });
- const auto right = al::span{al::assume_aligned<16>(RightOut.data()), SamplesToDo};
- std::transform(right.cbegin(), right.cend(), AccumSamples.cbegin(), right.begin(),
- [](const float sample, const float2 &accum) noexcept -> float
- { return sample + accum[1]; });
- /* Copy the new in-progress accumulation values to the front and clear the
- * following samples for the next mix.
- */
- const auto accum_inprog = AccumSamples.subspan(SamplesToDo, HrirLength);
- auto accum_iter = std::copy(accum_inprog.cbegin(), accum_inprog.cend(), AccumSamples.begin());
- std::fill_n(accum_iter, SamplesToDo, float2{});
- }
- #endif /* CORE_MIXER_HRTFBASE_H */
|