#include "../msdfgen.h" #include "arithmetics.hpp" namespace msdfgen { struct MultiDistance { double r, g, b; double med; }; static inline bool pixelClash(const FloatRGB &a, const FloatRGB &b, double threshold) { // Only consider pair where both are on the inside or both are on the outside bool aIn = (a.r > .5f)+(a.g > .5f)+(a.b > .5f) >= 2; bool bIn = (b.r > .5f)+(b.g > .5f)+(b.b > .5f) >= 2; if (aIn != bIn) return false; // If the change is 0 <-> 1 or 2 <-> 3 channels and not 1 <-> 1 or 2 <-> 2, it is not a clash if ((a.r > .5f && a.g > .5f && a.b > .5f) || (a.r < .5f && a.g < .5f && a.b < .5f) || (b.r > .5f && b.g > .5f && b.b > .5f) || (b.r < .5f && b.g < .5f && b.b < .5f)) return false; // Find which color is which: _a, _b = the changing channels, _c = the remaining one float aa, ab, ba, bb, ac, bc; if ((a.r > .5f) != (b.r > .5f) && (a.r < .5f) != (b.r < .5f)) { aa = a.r, ba = b.r; if ((a.g > .5f) != (b.g > .5f) && (a.g < .5f) != (b.g < .5f)) { ab = a.g, bb = b.g; ac = a.b, bc = b.b; } else if ((a.b > .5f) != (b.b > .5f) && (a.b < .5f) != (b.b < .5f)) { ab = a.b, bb = b.b; ac = a.g, bc = b.g; } else return false; // this should never happen } else if ((a.g > .5f) != (b.g > .5f) && (a.g < .5f) != (b.g < .5f) && (a.b > .5f) != (b.b > .5f) && (a.b < .5f) != (b.b < .5f)) { aa = a.g, ba = b.g; ab = a.b, bb = b.b; ac = a.r, bc = b.r; } else return false; // Find if the channels are in fact discontinuous return (fabsf(aa-ba) >= threshold) && (fabsf(ab-bb) >= threshold) && fabsf(ac-.5f) >= fabsf(bc-.5f); // Out of the pair, only flag the pixel farther from a shape edge } void msdfErrorCorrection(Bitmap &output, const Vector2 &threshold) { std::vector > clashes; int w = output.width(), h = output.height(); for (int y = 0; y < h; ++y) for (int x = 0; x < w; ++x) { if ((x > 0 && pixelClash(output(x, y), output(x-1, y), threshold.x)) || (x < w-1 && pixelClash(output(x, y), output(x+1, y), threshold.x)) || (y > 0 && pixelClash(output(x, y), output(x, y-1), threshold.y)) || (y < h-1 && pixelClash(output(x, y), output(x, y+1), threshold.y))) clashes.push_back(std::make_pair(x, y)); } for (std::vector >::const_iterator clash = clashes.begin(); clash != clashes.end(); ++clash) { FloatRGB &pixel = output(clash->first, clash->second); float med = median(pixel.r, pixel.g, pixel.b); pixel.r = med, pixel.g = med, pixel.b = med; } } void generateSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int contourCount = shape.contours.size(); int w = output.width(), h = output.height(); std::vector windings; windings.reserve(contourCount); for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) windings.push_back(contour->winding()); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel #endif { std::vector contourSD; contourSD.resize(contourCount); #ifdef MSDFGEN_USE_OPENMP #pragma omp for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { double dummy; Point2 p = Vector2(x+.5, y+.5)/scale-translate; double negDist = -SignedDistance::INFINITE.distance; double posDist = SignedDistance::INFINITE.distance; int winding = 0; std::vector::const_iterator contour = shape.contours.begin(); for (int i = 0; i < contourCount; ++i, ++contour) { SignedDistance minDistance; for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { SignedDistance distance = (*edge)->signedDistance(p, dummy); if (distance < minDistance) minDistance = distance; } contourSD[i] = minDistance.distance; if (windings[i] > 0 && minDistance.distance >= 0 && fabs(minDistance.distance) < fabs(posDist)) posDist = minDistance.distance; if (windings[i] < 0 && minDistance.distance <= 0 && fabs(minDistance.distance) < fabs(negDist)) negDist = minDistance.distance; } double sd = SignedDistance::INFINITE.distance; if (posDist >= 0 && fabs(posDist) <= fabs(negDist)) { sd = posDist; winding = 1; for (int i = 0; i < contourCount; ++i) if (windings[i] > 0 && contourSD[i] > sd && fabs(contourSD[i]) < fabs(negDist)) sd = contourSD[i]; } else if (negDist <= 0 && fabs(negDist) <= fabs(posDist)) { sd = negDist; winding = -1; for (int i = 0; i < contourCount; ++i) if (windings[i] < 0 && contourSD[i] < sd && fabs(contourSD[i]) < fabs(posDist)) sd = contourSD[i]; } for (int i = 0; i < contourCount; ++i) if (windings[i] != winding && fabs(contourSD[i]) < fabs(sd)) sd = contourSD[i]; output(x, row) = float(sd/range+.5); } } } } void generatePseudoSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int contourCount = shape.contours.size(); int w = output.width(), h = output.height(); std::vector windings; windings.reserve(contourCount); for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) windings.push_back(contour->winding()); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel #endif { std::vector contourSD; contourSD.resize(contourCount); #ifdef MSDFGEN_USE_OPENMP #pragma omp for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; double sd = SignedDistance::INFINITE.distance; double negDist = -SignedDistance::INFINITE.distance; double posDist = SignedDistance::INFINITE.distance; int winding = 0; std::vector::const_iterator contour = shape.contours.begin(); for (int i = 0; i < contourCount; ++i, ++contour) { SignedDistance minDistance; const EdgeHolder *nearEdge = NULL; double nearParam = 0; for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if (distance < minDistance) { minDistance = distance; nearEdge = &*edge; nearParam = param; } } if (fabs(minDistance.distance) < fabs(sd)) { sd = minDistance.distance; winding = -windings[i]; } if (nearEdge) (*nearEdge)->distanceToPseudoDistance(minDistance, p, nearParam); contourSD[i] = minDistance.distance; if (windings[i] > 0 && minDistance.distance >= 0 && fabs(minDistance.distance) < fabs(posDist)) posDist = minDistance.distance; if (windings[i] < 0 && minDistance.distance <= 0 && fabs(minDistance.distance) < fabs(negDist)) negDist = minDistance.distance; } double psd = SignedDistance::INFINITE.distance; if (posDist >= 0 && fabs(posDist) <= fabs(negDist)) { psd = posDist; winding = 1; for (int i = 0; i < contourCount; ++i) if (windings[i] > 0 && contourSD[i] > psd && fabs(contourSD[i]) < fabs(negDist)) psd = contourSD[i]; } else if (negDist <= 0 && fabs(negDist) <= fabs(posDist)) { psd = negDist; winding = -1; for (int i = 0; i < contourCount; ++i) if (windings[i] < 0 && contourSD[i] < psd && fabs(contourSD[i]) < fabs(posDist)) psd = contourSD[i]; } for (int i = 0; i < contourCount; ++i) if (windings[i] != winding && fabs(contourSD[i]) < fabs(psd)) psd = contourSD[i]; output(x, row) = float(psd/range+.5); } } } } void generateMSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold) { int contourCount = shape.contours.size(); int w = output.width(), h = output.height(); std::vector windings; windings.reserve(contourCount); for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) windings.push_back(contour->winding()); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel #endif { std::vector contourSD; contourSD.resize(contourCount); #ifdef MSDFGEN_USE_OPENMP #pragma omp for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; struct EdgePoint { SignedDistance minDistance; const EdgeHolder *nearEdge; double nearParam; } sr, sg, sb; sr.nearEdge = sg.nearEdge = sb.nearEdge = NULL; sr.nearParam = sg.nearParam = sb.nearParam = 0; double d = fabs(SignedDistance::INFINITE.distance); double negDist = -SignedDistance::INFINITE.distance; double posDist = SignedDistance::INFINITE.distance; int winding = 0; std::vector::const_iterator contour = shape.contours.begin(); for (int i = 0; i < contourCount; ++i, ++contour) { EdgePoint r, g, b; r.nearEdge = g.nearEdge = b.nearEdge = NULL; r.nearParam = g.nearParam = b.nearParam = 0; for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if ((*edge)->color&RED && distance < r.minDistance) { r.minDistance = distance; r.nearEdge = &*edge; r.nearParam = param; } if ((*edge)->color&GREEN && distance < g.minDistance) { g.minDistance = distance; g.nearEdge = &*edge; g.nearParam = param; } if ((*edge)->color&BLUE && distance < b.minDistance) { b.minDistance = distance; b.nearEdge = &*edge; b.nearParam = param; } } if (r.minDistance < sr.minDistance) sr = r; if (g.minDistance < sg.minDistance) sg = g; if (b.minDistance < sb.minDistance) sb = b; double medMinDistance = fabs(median(r.minDistance.distance, g.minDistance.distance, b.minDistance.distance)); if (medMinDistance < d) { d = medMinDistance; winding = -windings[i]; } if (r.nearEdge) (*r.nearEdge)->distanceToPseudoDistance(r.minDistance, p, r.nearParam); if (g.nearEdge) (*g.nearEdge)->distanceToPseudoDistance(g.minDistance, p, g.nearParam); if (b.nearEdge) (*b.nearEdge)->distanceToPseudoDistance(b.minDistance, p, b.nearParam); medMinDistance = median(r.minDistance.distance, g.minDistance.distance, b.minDistance.distance); contourSD[i].r = r.minDistance.distance; contourSD[i].g = g.minDistance.distance; contourSD[i].b = b.minDistance.distance; contourSD[i].med = medMinDistance; if (windings[i] > 0 && medMinDistance >= 0 && fabs(medMinDistance) < fabs(posDist)) posDist = medMinDistance; if (windings[i] < 0 && medMinDistance <= 0 && fabs(medMinDistance) < fabs(negDist)) negDist = medMinDistance; } if (sr.nearEdge) (*sr.nearEdge)->distanceToPseudoDistance(sr.minDistance, p, sr.nearParam); if (sg.nearEdge) (*sg.nearEdge)->distanceToPseudoDistance(sg.minDistance, p, sg.nearParam); if (sb.nearEdge) (*sb.nearEdge)->distanceToPseudoDistance(sb.minDistance, p, sb.nearParam); MultiDistance msd; msd.r = msd.g = msd.b = msd.med = SignedDistance::INFINITE.distance; if (posDist >= 0 && fabs(posDist) <= fabs(negDist)) { msd.med = SignedDistance::INFINITE.distance; winding = 1; for (int i = 0; i < contourCount; ++i) if (windings[i] > 0 && contourSD[i].med > msd.med && fabs(contourSD[i].med) < fabs(negDist)) msd = contourSD[i]; } else if (negDist <= 0 && fabs(negDist) <= fabs(posDist)) { msd.med = -SignedDistance::INFINITE.distance; winding = -1; for (int i = 0; i < contourCount; ++i) if (windings[i] < 0 && contourSD[i].med < msd.med && fabs(contourSD[i].med) < fabs(posDist)) msd = contourSD[i]; } for (int i = 0; i < contourCount; ++i) if (windings[i] != winding && fabs(contourSD[i].med) < fabs(msd.med)) msd = contourSD[i]; if (median(sr.minDistance.distance, sg.minDistance.distance, sb.minDistance.distance) == msd.med) { msd.r = sr.minDistance.distance; msd.g = sg.minDistance.distance; msd.b = sb.minDistance.distance; } output(x, row).r = float(msd.r/range+.5); output(x, row).g = float(msd.g/range+.5); output(x, row).b = float(msd.b/range+.5); } } } if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } void generateSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { double dummy; Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { SignedDistance distance = (*edge)->signedDistance(p, dummy); if (distance < minDistance) minDistance = distance; } output(x, row) = float(minDistance.distance/range+.5); } } } void generatePseudoSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; const EdgeHolder *nearEdge = NULL; double nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if (distance < minDistance) { minDistance = distance; nearEdge = &*edge; nearParam = param; } } if (nearEdge) (*nearEdge)->distanceToPseudoDistance(minDistance, p, nearParam); output(x, row) = float(minDistance.distance/range+.5); } } } void generateMSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; struct { SignedDistance minDistance; const EdgeHolder *nearEdge; double nearParam; } r, g, b; r.nearEdge = g.nearEdge = b.nearEdge = NULL; r.nearParam = g.nearParam = b.nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if ((*edge)->color&RED && distance < r.minDistance) { r.minDistance = distance; r.nearEdge = &*edge; r.nearParam = param; } if ((*edge)->color&GREEN && distance < g.minDistance) { g.minDistance = distance; g.nearEdge = &*edge; g.nearParam = param; } if ((*edge)->color&BLUE && distance < b.minDistance) { b.minDistance = distance; b.nearEdge = &*edge; b.nearParam = param; } } if (r.nearEdge) (*r.nearEdge)->distanceToPseudoDistance(r.minDistance, p, r.nearParam); if (g.nearEdge) (*g.nearEdge)->distanceToPseudoDistance(g.minDistance, p, g.nearParam); if (b.nearEdge) (*b.nearEdge)->distanceToPseudoDistance(b.minDistance, p, b.nearParam); output(x, row).r = float(r.minDistance.distance/range+.5); output(x, row).g = float(g.minDistance.distance/range+.5); output(x, row).b = float(b.minDistance.distance/range+.5); } } if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } }